MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dquartlem1 Structured version   Visualization version   GIF version

Theorem dquartlem1 25435
Description: Lemma for dquart 25437. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dquart.b (𝜑𝐵 ∈ ℂ)
dquart.c (𝜑𝐶 ∈ ℂ)
dquart.x (𝜑𝑋 ∈ ℂ)
dquart.s (𝜑𝑆 ∈ ℂ)
dquart.m (𝜑𝑀 = ((2 · 𝑆)↑2))
dquart.m0 (𝜑𝑀 ≠ 0)
dquart.i (𝜑𝐼 ∈ ℂ)
dquart.i2 (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆)))
Assertion
Ref Expression
dquartlem1 (𝜑 → ((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = 0 ↔ (𝑋 = (-𝑆 + 𝐼) ∨ 𝑋 = (-𝑆𝐼))))

Proof of Theorem dquartlem1
StepHypRef Expression
1 dquart.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
21sqcld 13511 . . . . . 6 (𝜑 → (𝑋↑2) ∈ ℂ)
3 dquart.m . . . . . . . . 9 (𝜑𝑀 = ((2 · 𝑆)↑2))
4 2cn 11707 . . . . . . . . . . 11 2 ∈ ℂ
5 dquart.s . . . . . . . . . . 11 (𝜑𝑆 ∈ ℂ)
6 mulcl 10615 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (2 · 𝑆) ∈ ℂ)
74, 5, 6sylancr 590 . . . . . . . . . 10 (𝜑 → (2 · 𝑆) ∈ ℂ)
87sqcld 13511 . . . . . . . . 9 (𝜑 → ((2 · 𝑆)↑2) ∈ ℂ)
93, 8eqeltrd 2916 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
10 dquart.b . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
119, 10addcld 10654 . . . . . . 7 (𝜑 → (𝑀 + 𝐵) ∈ ℂ)
1211halfcld 11877 . . . . . 6 (𝜑 → ((𝑀 + 𝐵) / 2) ∈ ℂ)
132, 12addcld 10654 . . . . 5 (𝜑 → ((𝑋↑2) + ((𝑀 + 𝐵) / 2)) ∈ ℂ)
149halfcld 11877 . . . . . . . 8 (𝜑 → (𝑀 / 2) ∈ ℂ)
1514, 1mulcld 10655 . . . . . . 7 (𝜑 → ((𝑀 / 2) · 𝑋) ∈ ℂ)
16 dquart.c . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
17 4cn 11717 . . . . . . . . 9 4 ∈ ℂ
1817a1i 11 . . . . . . . 8 (𝜑 → 4 ∈ ℂ)
19 4ne0 11740 . . . . . . . . 9 4 ≠ 0
2019a1i 11 . . . . . . . 8 (𝜑 → 4 ≠ 0)
2116, 18, 20divcld 11410 . . . . . . 7 (𝜑 → (𝐶 / 4) ∈ ℂ)
2215, 21subcld 10991 . . . . . 6 (𝜑 → (((𝑀 / 2) · 𝑋) − (𝐶 / 4)) ∈ ℂ)
23 dquart.m0 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
243, 23eqnetrrd 3082 . . . . . . . . 9 (𝜑 → ((2 · 𝑆)↑2) ≠ 0)
25 sqne0 13492 . . . . . . . . . 10 ((2 · 𝑆) ∈ ℂ → (((2 · 𝑆)↑2) ≠ 0 ↔ (2 · 𝑆) ≠ 0))
267, 25syl 17 . . . . . . . . 9 (𝜑 → (((2 · 𝑆)↑2) ≠ 0 ↔ (2 · 𝑆) ≠ 0))
2724, 26mpbid 235 . . . . . . . 8 (𝜑 → (2 · 𝑆) ≠ 0)
28 mulne0b 11275 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝑆 ∈ ℂ) → ((2 ≠ 0 ∧ 𝑆 ≠ 0) ↔ (2 · 𝑆) ≠ 0))
294, 5, 28sylancr 590 . . . . . . . 8 (𝜑 → ((2 ≠ 0 ∧ 𝑆 ≠ 0) ↔ (2 · 𝑆) ≠ 0))
3027, 29mpbird 260 . . . . . . 7 (𝜑 → (2 ≠ 0 ∧ 𝑆 ≠ 0))
3130simprd 499 . . . . . 6 (𝜑𝑆 ≠ 0)
3222, 5, 31divcld 11410 . . . . 5 (𝜑 → ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆) ∈ ℂ)
3313, 32addcld 10654 . . . 4 (𝜑 → (((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) ∈ ℂ)
344a1i 11 . . . 4 (𝜑 → 2 ∈ ℂ)
35 2ne0 11736 . . . . 5 2 ≠ 0
3635a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
3733, 34, 36diveq0ad 11420 . . 3 (𝜑 → (((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2) = 0 ↔ (((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = 0))
382, 12, 32addassd 10657 . . . . . 6 (𝜑 → (((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = ((𝑋↑2) + (((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆))))
3938oveq1d 7161 . . . . 5 (𝜑 → ((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2) = (((𝑋↑2) + (((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆))) / 2))
4012, 32addcld 10654 . . . . . 6 (𝜑 → (((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) ∈ ℂ)
412, 40, 34, 36divdird 11448 . . . . 5 (𝜑 → (((𝑋↑2) + (((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆))) / 2) = (((𝑋↑2) / 2) + ((((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2)))
422, 34, 36divrec2d 11414 . . . . . 6 (𝜑 → ((𝑋↑2) / 2) = ((1 / 2) · (𝑋↑2)))
4315, 21, 5, 31divsubdird 11449 . . . . . . . . . . 11 (𝜑 → ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆) = ((((𝑀 / 2) · 𝑋) / 𝑆) − ((𝐶 / 4) / 𝑆)))
4414, 1, 5, 31div23d 11447 . . . . . . . . . . . . 13 (𝜑 → (((𝑀 / 2) · 𝑋) / 𝑆) = (((𝑀 / 2) / 𝑆) · 𝑋))
455sqvald 13510 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆↑2) = (𝑆 · 𝑆))
4645oveq2d 7162 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑆↑2)) = (2 · (𝑆 · 𝑆)))
47 sqmul 13488 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 𝑆 ∈ ℂ) → ((2 · 𝑆)↑2) = ((2↑2) · (𝑆↑2)))
484, 5, 47sylancr 590 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((2 · 𝑆)↑2) = ((2↑2) · (𝑆↑2)))
494sqvali 13546 . . . . . . . . . . . . . . . . . . . . . 22 (2↑2) = (2 · 2)
5049oveq1i 7156 . . . . . . . . . . . . . . . . . . . . 21 ((2↑2) · (𝑆↑2)) = ((2 · 2) · (𝑆↑2))
5148, 50syl6eq 2875 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 · 𝑆)↑2) = ((2 · 2) · (𝑆↑2)))
525sqcld 13511 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑆↑2) ∈ ℂ)
5334, 34, 52mulassd 10658 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 · 2) · (𝑆↑2)) = (2 · (2 · (𝑆↑2))))
543, 51, 533eqtrd 2863 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 = (2 · (2 · (𝑆↑2))))
5554oveq1d 7161 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 / 2) = ((2 · (2 · (𝑆↑2))) / 2))
56 mulcl 10615 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℂ ∧ (𝑆↑2) ∈ ℂ) → (2 · (𝑆↑2)) ∈ ℂ)
574, 52, 56sylancr 590 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (2 · (𝑆↑2)) ∈ ℂ)
5857, 34, 36divcan3d 11415 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · (2 · (𝑆↑2))) / 2) = (2 · (𝑆↑2)))
5955, 58eqtrd 2859 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 / 2) = (2 · (𝑆↑2)))
6034, 5, 5mulassd 10658 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑆) · 𝑆) = (2 · (𝑆 · 𝑆)))
6146, 59, 603eqtr4d 2869 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 / 2) = ((2 · 𝑆) · 𝑆))
6261oveq1d 7161 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 / 2) / 𝑆) = (((2 · 𝑆) · 𝑆) / 𝑆))
637, 5, 31divcan4d 11416 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑆) · 𝑆) / 𝑆) = (2 · 𝑆))
6462, 63eqtrd 2859 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 / 2) / 𝑆) = (2 · 𝑆))
6564oveq1d 7161 . . . . . . . . . . . . 13 (𝜑 → (((𝑀 / 2) / 𝑆) · 𝑋) = ((2 · 𝑆) · 𝑋))
6644, 65eqtrd 2859 . . . . . . . . . . . 12 (𝜑 → (((𝑀 / 2) · 𝑋) / 𝑆) = ((2 · 𝑆) · 𝑋))
6766oveq1d 7161 . . . . . . . . . . 11 (𝜑 → ((((𝑀 / 2) · 𝑋) / 𝑆) − ((𝐶 / 4) / 𝑆)) = (((2 · 𝑆) · 𝑋) − ((𝐶 / 4) / 𝑆)))
6843, 67eqtrd 2859 . . . . . . . . . 10 (𝜑 → ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆) = (((2 · 𝑆) · 𝑋) − ((𝐶 / 4) / 𝑆)))
6968oveq2d 7162 . . . . . . . . 9 (𝜑 → (((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = (((𝑀 + 𝐵) / 2) + (((2 · 𝑆) · 𝑋) − ((𝐶 / 4) / 𝑆))))
707, 1mulcld 10655 . . . . . . . . . 10 (𝜑 → ((2 · 𝑆) · 𝑋) ∈ ℂ)
7121, 5, 31divcld 11410 . . . . . . . . . 10 (𝜑 → ((𝐶 / 4) / 𝑆) ∈ ℂ)
7212, 70, 71addsub12d 11014 . . . . . . . . 9 (𝜑 → (((𝑀 + 𝐵) / 2) + (((2 · 𝑆) · 𝑋) − ((𝐶 / 4) / 𝑆))) = (((2 · 𝑆) · 𝑋) + (((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆))))
7369, 72eqtrd 2859 . . . . . . . 8 (𝜑 → (((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = (((2 · 𝑆) · 𝑋) + (((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆))))
7473oveq1d 7161 . . . . . . 7 (𝜑 → ((((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2) = ((((2 · 𝑆) · 𝑋) + (((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆))) / 2))
7512, 71subcld 10991 . . . . . . . 8 (𝜑 → (((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆)) ∈ ℂ)
7670, 75, 34, 36divdird 11448 . . . . . . 7 (𝜑 → ((((2 · 𝑆) · 𝑋) + (((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆))) / 2) = ((((2 · 𝑆) · 𝑋) / 2) + ((((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆)) / 2)))
7734, 5, 1mulassd 10658 . . . . . . . . . 10 (𝜑 → ((2 · 𝑆) · 𝑋) = (2 · (𝑆 · 𝑋)))
7877oveq1d 7161 . . . . . . . . 9 (𝜑 → (((2 · 𝑆) · 𝑋) / 2) = ((2 · (𝑆 · 𝑋)) / 2))
795, 1mulcld 10655 . . . . . . . . . 10 (𝜑 → (𝑆 · 𝑋) ∈ ℂ)
8079, 34, 36divcan3d 11415 . . . . . . . . 9 (𝜑 → ((2 · (𝑆 · 𝑋)) / 2) = (𝑆 · 𝑋))
8178, 80eqtrd 2859 . . . . . . . 8 (𝜑 → (((2 · 𝑆) · 𝑋) / 2) = (𝑆 · 𝑋))
8252negcld 10978 . . . . . . . . . . . 12 (𝜑 → -(𝑆↑2) ∈ ℂ)
8310halfcld 11877 . . . . . . . . . . . 12 (𝜑 → (𝐵 / 2) ∈ ℂ)
8482, 83subcld 10991 . . . . . . . . . . 11 (𝜑 → (-(𝑆↑2) − (𝐵 / 2)) ∈ ℂ)
8552, 84, 71subsub4d 11022 . . . . . . . . . 10 (𝜑 → (((𝑆↑2) − (-(𝑆↑2) − (𝐵 / 2))) − ((𝐶 / 4) / 𝑆)) = ((𝑆↑2) − ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆))))
869, 10, 34, 36divdird 11448 . . . . . . . . . . . . 13 (𝜑 → ((𝑀 + 𝐵) / 2) = ((𝑀 / 2) + (𝐵 / 2)))
87522timesd 11875 . . . . . . . . . . . . . . 15 (𝜑 → (2 · (𝑆↑2)) = ((𝑆↑2) + (𝑆↑2)))
8859, 87eqtrd 2859 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 / 2) = ((𝑆↑2) + (𝑆↑2)))
8988oveq1d 7161 . . . . . . . . . . . . 13 (𝜑 → ((𝑀 / 2) + (𝐵 / 2)) = (((𝑆↑2) + (𝑆↑2)) + (𝐵 / 2)))
9086, 89eqtrd 2859 . . . . . . . . . . . 12 (𝜑 → ((𝑀 + 𝐵) / 2) = (((𝑆↑2) + (𝑆↑2)) + (𝐵 / 2)))
9152, 52, 83addassd 10657 . . . . . . . . . . . 12 (𝜑 → (((𝑆↑2) + (𝑆↑2)) + (𝐵 / 2)) = ((𝑆↑2) + ((𝑆↑2) + (𝐵 / 2))))
9252, 83addcld 10654 . . . . . . . . . . . . . 14 (𝜑 → ((𝑆↑2) + (𝐵 / 2)) ∈ ℂ)
9352, 92subnegd 10998 . . . . . . . . . . . . 13 (𝜑 → ((𝑆↑2) − -((𝑆↑2) + (𝐵 / 2))) = ((𝑆↑2) + ((𝑆↑2) + (𝐵 / 2))))
9452, 83negdi2d 11005 . . . . . . . . . . . . . 14 (𝜑 → -((𝑆↑2) + (𝐵 / 2)) = (-(𝑆↑2) − (𝐵 / 2)))
9594oveq2d 7162 . . . . . . . . . . . . 13 (𝜑 → ((𝑆↑2) − -((𝑆↑2) + (𝐵 / 2))) = ((𝑆↑2) − (-(𝑆↑2) − (𝐵 / 2))))
9693, 95eqtr3d 2861 . . . . . . . . . . . 12 (𝜑 → ((𝑆↑2) + ((𝑆↑2) + (𝐵 / 2))) = ((𝑆↑2) − (-(𝑆↑2) − (𝐵 / 2))))
9790, 91, 963eqtrd 2863 . . . . . . . . . . 11 (𝜑 → ((𝑀 + 𝐵) / 2) = ((𝑆↑2) − (-(𝑆↑2) − (𝐵 / 2))))
9897oveq1d 7161 . . . . . . . . . 10 (𝜑 → (((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆)) = (((𝑆↑2) − (-(𝑆↑2) − (𝐵 / 2))) − ((𝐶 / 4) / 𝑆)))
99 dquart.i2 . . . . . . . . . . 11 (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆)))
10099oveq2d 7162 . . . . . . . . . 10 (𝜑 → ((𝑆↑2) − (𝐼↑2)) = ((𝑆↑2) − ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆))))
10185, 98, 1003eqtr4d 2869 . . . . . . . . 9 (𝜑 → (((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆)) = ((𝑆↑2) − (𝐼↑2)))
102101oveq1d 7161 . . . . . . . 8 (𝜑 → ((((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆)) / 2) = (((𝑆↑2) − (𝐼↑2)) / 2))
10381, 102oveq12d 7164 . . . . . . 7 (𝜑 → ((((2 · 𝑆) · 𝑋) / 2) + ((((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆)) / 2)) = ((𝑆 · 𝑋) + (((𝑆↑2) − (𝐼↑2)) / 2)))
10474, 76, 1033eqtrd 2863 . . . . . 6 (𝜑 → ((((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2) = ((𝑆 · 𝑋) + (((𝑆↑2) − (𝐼↑2)) / 2)))
10542, 104oveq12d 7164 . . . . 5 (𝜑 → (((𝑋↑2) / 2) + ((((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2)) = (((1 / 2) · (𝑋↑2)) + ((𝑆 · 𝑋) + (((𝑆↑2) − (𝐼↑2)) / 2))))
10639, 41, 1053eqtrd 2863 . . . 4 (𝜑 → ((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2) = (((1 / 2) · (𝑋↑2)) + ((𝑆 · 𝑋) + (((𝑆↑2) − (𝐼↑2)) / 2))))
107106eqeq1d 2826 . . 3 (𝜑 → (((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2) = 0 ↔ (((1 / 2) · (𝑋↑2)) + ((𝑆 · 𝑋) + (((𝑆↑2) − (𝐼↑2)) / 2))) = 0))
10837, 107bitr3d 284 . 2 (𝜑 → ((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = 0 ↔ (((1 / 2) · (𝑋↑2)) + ((𝑆 · 𝑋) + (((𝑆↑2) − (𝐼↑2)) / 2))) = 0))
109 ax-1cn 10589 . . . 4 1 ∈ ℂ
110 halfcl 11857 . . . 4 (1 ∈ ℂ → (1 / 2) ∈ ℂ)
111109, 110mp1i 13 . . 3 (𝜑 → (1 / 2) ∈ ℂ)
112 ax-1ne0 10600 . . . . 5 1 ≠ 0
113109, 4, 112, 35divne0i 11382 . . . 4 (1 / 2) ≠ 0
114113a1i 11 . . 3 (𝜑 → (1 / 2) ≠ 0)
115 dquart.i . . . . . 6 (𝜑𝐼 ∈ ℂ)
116115sqcld 13511 . . . . 5 (𝜑 → (𝐼↑2) ∈ ℂ)
11752, 116subcld 10991 . . . 4 (𝜑 → ((𝑆↑2) − (𝐼↑2)) ∈ ℂ)
118117halfcld 11877 . . 3 (𝜑 → (((𝑆↑2) − (𝐼↑2)) / 2) ∈ ℂ)
119109a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
120 2cnne0 11842 . . . . . . . . . 10 (2 ∈ ℂ ∧ 2 ≠ 0)
121120a1i 11 . . . . . . . . 9 (𝜑 → (2 ∈ ℂ ∧ 2 ≠ 0))
122 divmuldiv 11334 . . . . . . . . 9 (((1 ∈ ℂ ∧ ((𝑆↑2) − (𝐼↑2)) ∈ ℂ) ∧ ((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) → ((1 / 2) · (((𝑆↑2) − (𝐼↑2)) / 2)) = ((1 · ((𝑆↑2) − (𝐼↑2))) / (2 · 2)))
123119, 117, 121, 121, 122syl22anc 837 . . . . . . . 8 (𝜑 → ((1 / 2) · (((𝑆↑2) − (𝐼↑2)) / 2)) = ((1 · ((𝑆↑2) − (𝐼↑2))) / (2 · 2)))
124117mulid2d 10653 . . . . . . . . 9 (𝜑 → (1 · ((𝑆↑2) − (𝐼↑2))) = ((𝑆↑2) − (𝐼↑2)))
125 2t2e4 11796 . . . . . . . . . 10 (2 · 2) = 4
126125a1i 11 . . . . . . . . 9 (𝜑 → (2 · 2) = 4)
127124, 126oveq12d 7164 . . . . . . . 8 (𝜑 → ((1 · ((𝑆↑2) − (𝐼↑2))) / (2 · 2)) = (((𝑆↑2) − (𝐼↑2)) / 4))
128123, 127eqtrd 2859 . . . . . . 7 (𝜑 → ((1 / 2) · (((𝑆↑2) − (𝐼↑2)) / 2)) = (((𝑆↑2) − (𝐼↑2)) / 4))
129128oveq2d 7162 . . . . . 6 (𝜑 → (4 · ((1 / 2) · (((𝑆↑2) − (𝐼↑2)) / 2))) = (4 · (((𝑆↑2) − (𝐼↑2)) / 4)))
130117, 18, 20divcan2d 11412 . . . . . 6 (𝜑 → (4 · (((𝑆↑2) − (𝐼↑2)) / 4)) = ((𝑆↑2) − (𝐼↑2)))
131129, 130eqtrd 2859 . . . . 5 (𝜑 → (4 · ((1 / 2) · (((𝑆↑2) − (𝐼↑2)) / 2))) = ((𝑆↑2) − (𝐼↑2)))
132131oveq2d 7162 . . . 4 (𝜑 → ((𝑆↑2) − (4 · ((1 / 2) · (((𝑆↑2) − (𝐼↑2)) / 2)))) = ((𝑆↑2) − ((𝑆↑2) − (𝐼↑2))))
13352, 116nncand 10996 . . . 4 (𝜑 → ((𝑆↑2) − ((𝑆↑2) − (𝐼↑2))) = (𝐼↑2))
134132, 133eqtr2d 2860 . . 3 (𝜑 → (𝐼↑2) = ((𝑆↑2) − (4 · ((1 / 2) · (((𝑆↑2) − (𝐼↑2)) / 2)))))
135111, 114, 5, 118, 1, 115, 134quad2 25423 . 2 (𝜑 → ((((1 / 2) · (𝑋↑2)) + ((𝑆 · 𝑋) + (((𝑆↑2) − (𝐼↑2)) / 2))) = 0 ↔ (𝑋 = ((-𝑆 + 𝐼) / (2 · (1 / 2))) ∨ 𝑋 = ((-𝑆𝐼) / (2 · (1 / 2))))))
1364, 35recidi 11365 . . . . . 6 (2 · (1 / 2)) = 1
137136oveq2i 7157 . . . . 5 ((-𝑆 + 𝐼) / (2 · (1 / 2))) = ((-𝑆 + 𝐼) / 1)
1385negcld 10978 . . . . . . 7 (𝜑 → -𝑆 ∈ ℂ)
139138, 115addcld 10654 . . . . . 6 (𝜑 → (-𝑆 + 𝐼) ∈ ℂ)
140139div1d 11402 . . . . 5 (𝜑 → ((-𝑆 + 𝐼) / 1) = (-𝑆 + 𝐼))
141137, 140syl5eq 2871 . . . 4 (𝜑 → ((-𝑆 + 𝐼) / (2 · (1 / 2))) = (-𝑆 + 𝐼))
142141eqeq2d 2835 . . 3 (𝜑 → (𝑋 = ((-𝑆 + 𝐼) / (2 · (1 / 2))) ↔ 𝑋 = (-𝑆 + 𝐼)))
143136oveq2i 7157 . . . . 5 ((-𝑆𝐼) / (2 · (1 / 2))) = ((-𝑆𝐼) / 1)
144138, 115subcld 10991 . . . . . 6 (𝜑 → (-𝑆𝐼) ∈ ℂ)
145144div1d 11402 . . . . 5 (𝜑 → ((-𝑆𝐼) / 1) = (-𝑆𝐼))
146143, 145syl5eq 2871 . . . 4 (𝜑 → ((-𝑆𝐼) / (2 · (1 / 2))) = (-𝑆𝐼))
147146eqeq2d 2835 . . 3 (𝜑 → (𝑋 = ((-𝑆𝐼) / (2 · (1 / 2))) ↔ 𝑋 = (-𝑆𝐼)))
148142, 147orbi12d 916 . 2 (𝜑 → ((𝑋 = ((-𝑆 + 𝐼) / (2 · (1 / 2))) ∨ 𝑋 = ((-𝑆𝐼) / (2 · (1 / 2)))) ↔ (𝑋 = (-𝑆 + 𝐼) ∨ 𝑋 = (-𝑆𝐼))))
149108, 135, 1483bitrd 308 1 (𝜑 → ((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = 0 ↔ (𝑋 = (-𝑆 + 𝐼) ∨ 𝑋 = (-𝑆𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2115  wne 3014  (class class class)co 7146  cc 10529  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cmin 10864  -cneg 10865   / cdiv 11291  2c2 11687  4c4 11689  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-n0 11893  df-z 11977  df-uz 12239  df-seq 13372  df-exp 13433
This theorem is referenced by:  dquart  25437
  Copyright terms: Public domain W3C validator