MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dquartlem1 Structured version   Visualization version   GIF version

Theorem dquartlem1 25906
Description: Lemma for dquart 25908. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dquart.b (𝜑𝐵 ∈ ℂ)
dquart.c (𝜑𝐶 ∈ ℂ)
dquart.x (𝜑𝑋 ∈ ℂ)
dquart.s (𝜑𝑆 ∈ ℂ)
dquart.m (𝜑𝑀 = ((2 · 𝑆)↑2))
dquart.m0 (𝜑𝑀 ≠ 0)
dquart.i (𝜑𝐼 ∈ ℂ)
dquart.i2 (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆)))
Assertion
Ref Expression
dquartlem1 (𝜑 → ((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = 0 ↔ (𝑋 = (-𝑆 + 𝐼) ∨ 𝑋 = (-𝑆𝐼))))

Proof of Theorem dquartlem1
StepHypRef Expression
1 dquart.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
21sqcld 13790 . . . . . 6 (𝜑 → (𝑋↑2) ∈ ℂ)
3 dquart.m . . . . . . . . 9 (𝜑𝑀 = ((2 · 𝑆)↑2))
4 2cn 11978 . . . . . . . . . . 11 2 ∈ ℂ
5 dquart.s . . . . . . . . . . 11 (𝜑𝑆 ∈ ℂ)
6 mulcl 10886 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (2 · 𝑆) ∈ ℂ)
74, 5, 6sylancr 586 . . . . . . . . . 10 (𝜑 → (2 · 𝑆) ∈ ℂ)
87sqcld 13790 . . . . . . . . 9 (𝜑 → ((2 · 𝑆)↑2) ∈ ℂ)
93, 8eqeltrd 2839 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
10 dquart.b . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
119, 10addcld 10925 . . . . . . 7 (𝜑 → (𝑀 + 𝐵) ∈ ℂ)
1211halfcld 12148 . . . . . 6 (𝜑 → ((𝑀 + 𝐵) / 2) ∈ ℂ)
132, 12addcld 10925 . . . . 5 (𝜑 → ((𝑋↑2) + ((𝑀 + 𝐵) / 2)) ∈ ℂ)
149halfcld 12148 . . . . . . . 8 (𝜑 → (𝑀 / 2) ∈ ℂ)
1514, 1mulcld 10926 . . . . . . 7 (𝜑 → ((𝑀 / 2) · 𝑋) ∈ ℂ)
16 dquart.c . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
17 4cn 11988 . . . . . . . . 9 4 ∈ ℂ
1817a1i 11 . . . . . . . 8 (𝜑 → 4 ∈ ℂ)
19 4ne0 12011 . . . . . . . . 9 4 ≠ 0
2019a1i 11 . . . . . . . 8 (𝜑 → 4 ≠ 0)
2116, 18, 20divcld 11681 . . . . . . 7 (𝜑 → (𝐶 / 4) ∈ ℂ)
2215, 21subcld 11262 . . . . . 6 (𝜑 → (((𝑀 / 2) · 𝑋) − (𝐶 / 4)) ∈ ℂ)
23 dquart.m0 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
243, 23eqnetrrd 3011 . . . . . . . . 9 (𝜑 → ((2 · 𝑆)↑2) ≠ 0)
25 sqne0 13771 . . . . . . . . . 10 ((2 · 𝑆) ∈ ℂ → (((2 · 𝑆)↑2) ≠ 0 ↔ (2 · 𝑆) ≠ 0))
267, 25syl 17 . . . . . . . . 9 (𝜑 → (((2 · 𝑆)↑2) ≠ 0 ↔ (2 · 𝑆) ≠ 0))
2724, 26mpbid 231 . . . . . . . 8 (𝜑 → (2 · 𝑆) ≠ 0)
28 mulne0b 11546 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝑆 ∈ ℂ) → ((2 ≠ 0 ∧ 𝑆 ≠ 0) ↔ (2 · 𝑆) ≠ 0))
294, 5, 28sylancr 586 . . . . . . . 8 (𝜑 → ((2 ≠ 0 ∧ 𝑆 ≠ 0) ↔ (2 · 𝑆) ≠ 0))
3027, 29mpbird 256 . . . . . . 7 (𝜑 → (2 ≠ 0 ∧ 𝑆 ≠ 0))
3130simprd 495 . . . . . 6 (𝜑𝑆 ≠ 0)
3222, 5, 31divcld 11681 . . . . 5 (𝜑 → ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆) ∈ ℂ)
3313, 32addcld 10925 . . . 4 (𝜑 → (((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) ∈ ℂ)
344a1i 11 . . . 4 (𝜑 → 2 ∈ ℂ)
35 2ne0 12007 . . . . 5 2 ≠ 0
3635a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
3733, 34, 36diveq0ad 11691 . . 3 (𝜑 → (((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2) = 0 ↔ (((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = 0))
382, 12, 32addassd 10928 . . . . . 6 (𝜑 → (((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = ((𝑋↑2) + (((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆))))
3938oveq1d 7270 . . . . 5 (𝜑 → ((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2) = (((𝑋↑2) + (((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆))) / 2))
4012, 32addcld 10925 . . . . . 6 (𝜑 → (((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) ∈ ℂ)
412, 40, 34, 36divdird 11719 . . . . 5 (𝜑 → (((𝑋↑2) + (((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆))) / 2) = (((𝑋↑2) / 2) + ((((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2)))
422, 34, 36divrec2d 11685 . . . . . 6 (𝜑 → ((𝑋↑2) / 2) = ((1 / 2) · (𝑋↑2)))
4315, 21, 5, 31divsubdird 11720 . . . . . . . . . . 11 (𝜑 → ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆) = ((((𝑀 / 2) · 𝑋) / 𝑆) − ((𝐶 / 4) / 𝑆)))
4414, 1, 5, 31div23d 11718 . . . . . . . . . . . . 13 (𝜑 → (((𝑀 / 2) · 𝑋) / 𝑆) = (((𝑀 / 2) / 𝑆) · 𝑋))
455sqvald 13789 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆↑2) = (𝑆 · 𝑆))
4645oveq2d 7271 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑆↑2)) = (2 · (𝑆 · 𝑆)))
47 sqmul 13767 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 𝑆 ∈ ℂ) → ((2 · 𝑆)↑2) = ((2↑2) · (𝑆↑2)))
484, 5, 47sylancr 586 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((2 · 𝑆)↑2) = ((2↑2) · (𝑆↑2)))
494sqvali 13825 . . . . . . . . . . . . . . . . . . . . . 22 (2↑2) = (2 · 2)
5049oveq1i 7265 . . . . . . . . . . . . . . . . . . . . 21 ((2↑2) · (𝑆↑2)) = ((2 · 2) · (𝑆↑2))
5148, 50eqtrdi 2795 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 · 𝑆)↑2) = ((2 · 2) · (𝑆↑2)))
525sqcld 13790 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑆↑2) ∈ ℂ)
5334, 34, 52mulassd 10929 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 · 2) · (𝑆↑2)) = (2 · (2 · (𝑆↑2))))
543, 51, 533eqtrd 2782 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 = (2 · (2 · (𝑆↑2))))
5554oveq1d 7270 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 / 2) = ((2 · (2 · (𝑆↑2))) / 2))
56 mulcl 10886 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℂ ∧ (𝑆↑2) ∈ ℂ) → (2 · (𝑆↑2)) ∈ ℂ)
574, 52, 56sylancr 586 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (2 · (𝑆↑2)) ∈ ℂ)
5857, 34, 36divcan3d 11686 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · (2 · (𝑆↑2))) / 2) = (2 · (𝑆↑2)))
5955, 58eqtrd 2778 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 / 2) = (2 · (𝑆↑2)))
6034, 5, 5mulassd 10929 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑆) · 𝑆) = (2 · (𝑆 · 𝑆)))
6146, 59, 603eqtr4d 2788 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 / 2) = ((2 · 𝑆) · 𝑆))
6261oveq1d 7270 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 / 2) / 𝑆) = (((2 · 𝑆) · 𝑆) / 𝑆))
637, 5, 31divcan4d 11687 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑆) · 𝑆) / 𝑆) = (2 · 𝑆))
6462, 63eqtrd 2778 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 / 2) / 𝑆) = (2 · 𝑆))
6564oveq1d 7270 . . . . . . . . . . . . 13 (𝜑 → (((𝑀 / 2) / 𝑆) · 𝑋) = ((2 · 𝑆) · 𝑋))
6644, 65eqtrd 2778 . . . . . . . . . . . 12 (𝜑 → (((𝑀 / 2) · 𝑋) / 𝑆) = ((2 · 𝑆) · 𝑋))
6766oveq1d 7270 . . . . . . . . . . 11 (𝜑 → ((((𝑀 / 2) · 𝑋) / 𝑆) − ((𝐶 / 4) / 𝑆)) = (((2 · 𝑆) · 𝑋) − ((𝐶 / 4) / 𝑆)))
6843, 67eqtrd 2778 . . . . . . . . . 10 (𝜑 → ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆) = (((2 · 𝑆) · 𝑋) − ((𝐶 / 4) / 𝑆)))
6968oveq2d 7271 . . . . . . . . 9 (𝜑 → (((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = (((𝑀 + 𝐵) / 2) + (((2 · 𝑆) · 𝑋) − ((𝐶 / 4) / 𝑆))))
707, 1mulcld 10926 . . . . . . . . . 10 (𝜑 → ((2 · 𝑆) · 𝑋) ∈ ℂ)
7121, 5, 31divcld 11681 . . . . . . . . . 10 (𝜑 → ((𝐶 / 4) / 𝑆) ∈ ℂ)
7212, 70, 71addsub12d 11285 . . . . . . . . 9 (𝜑 → (((𝑀 + 𝐵) / 2) + (((2 · 𝑆) · 𝑋) − ((𝐶 / 4) / 𝑆))) = (((2 · 𝑆) · 𝑋) + (((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆))))
7369, 72eqtrd 2778 . . . . . . . 8 (𝜑 → (((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = (((2 · 𝑆) · 𝑋) + (((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆))))
7473oveq1d 7270 . . . . . . 7 (𝜑 → ((((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2) = ((((2 · 𝑆) · 𝑋) + (((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆))) / 2))
7512, 71subcld 11262 . . . . . . . 8 (𝜑 → (((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆)) ∈ ℂ)
7670, 75, 34, 36divdird 11719 . . . . . . 7 (𝜑 → ((((2 · 𝑆) · 𝑋) + (((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆))) / 2) = ((((2 · 𝑆) · 𝑋) / 2) + ((((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆)) / 2)))
7734, 5, 1mulassd 10929 . . . . . . . . . 10 (𝜑 → ((2 · 𝑆) · 𝑋) = (2 · (𝑆 · 𝑋)))
7877oveq1d 7270 . . . . . . . . 9 (𝜑 → (((2 · 𝑆) · 𝑋) / 2) = ((2 · (𝑆 · 𝑋)) / 2))
795, 1mulcld 10926 . . . . . . . . . 10 (𝜑 → (𝑆 · 𝑋) ∈ ℂ)
8079, 34, 36divcan3d 11686 . . . . . . . . 9 (𝜑 → ((2 · (𝑆 · 𝑋)) / 2) = (𝑆 · 𝑋))
8178, 80eqtrd 2778 . . . . . . . 8 (𝜑 → (((2 · 𝑆) · 𝑋) / 2) = (𝑆 · 𝑋))
8252negcld 11249 . . . . . . . . . . . 12 (𝜑 → -(𝑆↑2) ∈ ℂ)
8310halfcld 12148 . . . . . . . . . . . 12 (𝜑 → (𝐵 / 2) ∈ ℂ)
8482, 83subcld 11262 . . . . . . . . . . 11 (𝜑 → (-(𝑆↑2) − (𝐵 / 2)) ∈ ℂ)
8552, 84, 71subsub4d 11293 . . . . . . . . . 10 (𝜑 → (((𝑆↑2) − (-(𝑆↑2) − (𝐵 / 2))) − ((𝐶 / 4) / 𝑆)) = ((𝑆↑2) − ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆))))
869, 10, 34, 36divdird 11719 . . . . . . . . . . . . 13 (𝜑 → ((𝑀 + 𝐵) / 2) = ((𝑀 / 2) + (𝐵 / 2)))
87522timesd 12146 . . . . . . . . . . . . . . 15 (𝜑 → (2 · (𝑆↑2)) = ((𝑆↑2) + (𝑆↑2)))
8859, 87eqtrd 2778 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 / 2) = ((𝑆↑2) + (𝑆↑2)))
8988oveq1d 7270 . . . . . . . . . . . . 13 (𝜑 → ((𝑀 / 2) + (𝐵 / 2)) = (((𝑆↑2) + (𝑆↑2)) + (𝐵 / 2)))
9086, 89eqtrd 2778 . . . . . . . . . . . 12 (𝜑 → ((𝑀 + 𝐵) / 2) = (((𝑆↑2) + (𝑆↑2)) + (𝐵 / 2)))
9152, 52, 83addassd 10928 . . . . . . . . . . . 12 (𝜑 → (((𝑆↑2) + (𝑆↑2)) + (𝐵 / 2)) = ((𝑆↑2) + ((𝑆↑2) + (𝐵 / 2))))
9252, 83addcld 10925 . . . . . . . . . . . . . 14 (𝜑 → ((𝑆↑2) + (𝐵 / 2)) ∈ ℂ)
9352, 92subnegd 11269 . . . . . . . . . . . . 13 (𝜑 → ((𝑆↑2) − -((𝑆↑2) + (𝐵 / 2))) = ((𝑆↑2) + ((𝑆↑2) + (𝐵 / 2))))
9452, 83negdi2d 11276 . . . . . . . . . . . . . 14 (𝜑 → -((𝑆↑2) + (𝐵 / 2)) = (-(𝑆↑2) − (𝐵 / 2)))
9594oveq2d 7271 . . . . . . . . . . . . 13 (𝜑 → ((𝑆↑2) − -((𝑆↑2) + (𝐵 / 2))) = ((𝑆↑2) − (-(𝑆↑2) − (𝐵 / 2))))
9693, 95eqtr3d 2780 . . . . . . . . . . . 12 (𝜑 → ((𝑆↑2) + ((𝑆↑2) + (𝐵 / 2))) = ((𝑆↑2) − (-(𝑆↑2) − (𝐵 / 2))))
9790, 91, 963eqtrd 2782 . . . . . . . . . . 11 (𝜑 → ((𝑀 + 𝐵) / 2) = ((𝑆↑2) − (-(𝑆↑2) − (𝐵 / 2))))
9897oveq1d 7270 . . . . . . . . . 10 (𝜑 → (((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆)) = (((𝑆↑2) − (-(𝑆↑2) − (𝐵 / 2))) − ((𝐶 / 4) / 𝑆)))
99 dquart.i2 . . . . . . . . . . 11 (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆)))
10099oveq2d 7271 . . . . . . . . . 10 (𝜑 → ((𝑆↑2) − (𝐼↑2)) = ((𝑆↑2) − ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆))))
10185, 98, 1003eqtr4d 2788 . . . . . . . . 9 (𝜑 → (((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆)) = ((𝑆↑2) − (𝐼↑2)))
102101oveq1d 7270 . . . . . . . 8 (𝜑 → ((((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆)) / 2) = (((𝑆↑2) − (𝐼↑2)) / 2))
10381, 102oveq12d 7273 . . . . . . 7 (𝜑 → ((((2 · 𝑆) · 𝑋) / 2) + ((((𝑀 + 𝐵) / 2) − ((𝐶 / 4) / 𝑆)) / 2)) = ((𝑆 · 𝑋) + (((𝑆↑2) − (𝐼↑2)) / 2)))
10474, 76, 1033eqtrd 2782 . . . . . 6 (𝜑 → ((((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2) = ((𝑆 · 𝑋) + (((𝑆↑2) − (𝐼↑2)) / 2)))
10542, 104oveq12d 7273 . . . . 5 (𝜑 → (((𝑋↑2) / 2) + ((((𝑀 + 𝐵) / 2) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2)) = (((1 / 2) · (𝑋↑2)) + ((𝑆 · 𝑋) + (((𝑆↑2) − (𝐼↑2)) / 2))))
10639, 41, 1053eqtrd 2782 . . . 4 (𝜑 → ((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2) = (((1 / 2) · (𝑋↑2)) + ((𝑆 · 𝑋) + (((𝑆↑2) − (𝐼↑2)) / 2))))
107106eqeq1d 2740 . . 3 (𝜑 → (((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) / 2) = 0 ↔ (((1 / 2) · (𝑋↑2)) + ((𝑆 · 𝑋) + (((𝑆↑2) − (𝐼↑2)) / 2))) = 0))
10837, 107bitr3d 280 . 2 (𝜑 → ((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = 0 ↔ (((1 / 2) · (𝑋↑2)) + ((𝑆 · 𝑋) + (((𝑆↑2) − (𝐼↑2)) / 2))) = 0))
109 ax-1cn 10860 . . . 4 1 ∈ ℂ
110 halfcl 12128 . . . 4 (1 ∈ ℂ → (1 / 2) ∈ ℂ)
111109, 110mp1i 13 . . 3 (𝜑 → (1 / 2) ∈ ℂ)
112 ax-1ne0 10871 . . . . 5 1 ≠ 0
113109, 4, 112, 35divne0i 11653 . . . 4 (1 / 2) ≠ 0
114113a1i 11 . . 3 (𝜑 → (1 / 2) ≠ 0)
115 dquart.i . . . . . 6 (𝜑𝐼 ∈ ℂ)
116115sqcld 13790 . . . . 5 (𝜑 → (𝐼↑2) ∈ ℂ)
11752, 116subcld 11262 . . . 4 (𝜑 → ((𝑆↑2) − (𝐼↑2)) ∈ ℂ)
118117halfcld 12148 . . 3 (𝜑 → (((𝑆↑2) − (𝐼↑2)) / 2) ∈ ℂ)
119109a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
120 2cnne0 12113 . . . . . . . . . 10 (2 ∈ ℂ ∧ 2 ≠ 0)
121120a1i 11 . . . . . . . . 9 (𝜑 → (2 ∈ ℂ ∧ 2 ≠ 0))
122 divmuldiv 11605 . . . . . . . . 9 (((1 ∈ ℂ ∧ ((𝑆↑2) − (𝐼↑2)) ∈ ℂ) ∧ ((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) → ((1 / 2) · (((𝑆↑2) − (𝐼↑2)) / 2)) = ((1 · ((𝑆↑2) − (𝐼↑2))) / (2 · 2)))
123119, 117, 121, 121, 122syl22anc 835 . . . . . . . 8 (𝜑 → ((1 / 2) · (((𝑆↑2) − (𝐼↑2)) / 2)) = ((1 · ((𝑆↑2) − (𝐼↑2))) / (2 · 2)))
124117mulid2d 10924 . . . . . . . . 9 (𝜑 → (1 · ((𝑆↑2) − (𝐼↑2))) = ((𝑆↑2) − (𝐼↑2)))
125 2t2e4 12067 . . . . . . . . . 10 (2 · 2) = 4
126125a1i 11 . . . . . . . . 9 (𝜑 → (2 · 2) = 4)
127124, 126oveq12d 7273 . . . . . . . 8 (𝜑 → ((1 · ((𝑆↑2) − (𝐼↑2))) / (2 · 2)) = (((𝑆↑2) − (𝐼↑2)) / 4))
128123, 127eqtrd 2778 . . . . . . 7 (𝜑 → ((1 / 2) · (((𝑆↑2) − (𝐼↑2)) / 2)) = (((𝑆↑2) − (𝐼↑2)) / 4))
129128oveq2d 7271 . . . . . 6 (𝜑 → (4 · ((1 / 2) · (((𝑆↑2) − (𝐼↑2)) / 2))) = (4 · (((𝑆↑2) − (𝐼↑2)) / 4)))
130117, 18, 20divcan2d 11683 . . . . . 6 (𝜑 → (4 · (((𝑆↑2) − (𝐼↑2)) / 4)) = ((𝑆↑2) − (𝐼↑2)))
131129, 130eqtrd 2778 . . . . 5 (𝜑 → (4 · ((1 / 2) · (((𝑆↑2) − (𝐼↑2)) / 2))) = ((𝑆↑2) − (𝐼↑2)))
132131oveq2d 7271 . . . 4 (𝜑 → ((𝑆↑2) − (4 · ((1 / 2) · (((𝑆↑2) − (𝐼↑2)) / 2)))) = ((𝑆↑2) − ((𝑆↑2) − (𝐼↑2))))
13352, 116nncand 11267 . . . 4 (𝜑 → ((𝑆↑2) − ((𝑆↑2) − (𝐼↑2))) = (𝐼↑2))
134132, 133eqtr2d 2779 . . 3 (𝜑 → (𝐼↑2) = ((𝑆↑2) − (4 · ((1 / 2) · (((𝑆↑2) − (𝐼↑2)) / 2)))))
135111, 114, 5, 118, 1, 115, 134quad2 25894 . 2 (𝜑 → ((((1 / 2) · (𝑋↑2)) + ((𝑆 · 𝑋) + (((𝑆↑2) − (𝐼↑2)) / 2))) = 0 ↔ (𝑋 = ((-𝑆 + 𝐼) / (2 · (1 / 2))) ∨ 𝑋 = ((-𝑆𝐼) / (2 · (1 / 2))))))
1364, 35recidi 11636 . . . . . 6 (2 · (1 / 2)) = 1
137136oveq2i 7266 . . . . 5 ((-𝑆 + 𝐼) / (2 · (1 / 2))) = ((-𝑆 + 𝐼) / 1)
1385negcld 11249 . . . . . . 7 (𝜑 → -𝑆 ∈ ℂ)
139138, 115addcld 10925 . . . . . 6 (𝜑 → (-𝑆 + 𝐼) ∈ ℂ)
140139div1d 11673 . . . . 5 (𝜑 → ((-𝑆 + 𝐼) / 1) = (-𝑆 + 𝐼))
141137, 140syl5eq 2791 . . . 4 (𝜑 → ((-𝑆 + 𝐼) / (2 · (1 / 2))) = (-𝑆 + 𝐼))
142141eqeq2d 2749 . . 3 (𝜑 → (𝑋 = ((-𝑆 + 𝐼) / (2 · (1 / 2))) ↔ 𝑋 = (-𝑆 + 𝐼)))
143136oveq2i 7266 . . . . 5 ((-𝑆𝐼) / (2 · (1 / 2))) = ((-𝑆𝐼) / 1)
144138, 115subcld 11262 . . . . . 6 (𝜑 → (-𝑆𝐼) ∈ ℂ)
145144div1d 11673 . . . . 5 (𝜑 → ((-𝑆𝐼) / 1) = (-𝑆𝐼))
146143, 145syl5eq 2791 . . . 4 (𝜑 → ((-𝑆𝐼) / (2 · (1 / 2))) = (-𝑆𝐼))
147146eqeq2d 2749 . . 3 (𝜑 → (𝑋 = ((-𝑆𝐼) / (2 · (1 / 2))) ↔ 𝑋 = (-𝑆𝐼)))
148142, 147orbi12d 915 . 2 (𝜑 → ((𝑋 = ((-𝑆 + 𝐼) / (2 · (1 / 2))) ∨ 𝑋 = ((-𝑆𝐼) / (2 · (1 / 2)))) ↔ (𝑋 = (-𝑆 + 𝐼) ∨ 𝑋 = (-𝑆𝐼))))
149108, 135, 1483bitrd 304 1 (𝜑 → ((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = 0 ↔ (𝑋 = (-𝑆 + 𝐼) ∨ 𝑋 = (-𝑆𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  4c4 11960  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  dquart  25908
  Copyright terms: Public domain W3C validator