Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
ℂcc 11108 -cneg 11445 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 df-neg 11447 |
This theorem is referenced by: negcon1ad
11566 mulsubaddmulsub
11678 recextlem1
11844 mul2lt0rlt0
13076 xov1plusxeqvd
13475 ceim1l
13812 modnegd
13891 expaddzlem
14071 cjreb
15070 sqrtneg
15214 max0add
15257 reusq0
15409 iseraltlem2
15629 iseraltlem3
15630 fsumsub
15734 telfsumo2
15749 incexc
15783 incexc2
15784 fallrisefac
15969 binomrisefac
15986 efi4p
16080 oexpneg
16288 bitscmp
16379 bitsf1
16387 pcadd2
16823 gznegcl
16868 mulgdirlem
18985 mulgdir
18986 znunit
21119 cphsqrtcl2
24703 pjthlem1
24954 mbfsub
25179 iblcnlem1
25305 itgcnlem
25307 iblneg
25320 itgneg
25321 iblsub
25339 itgsub
25343 ditgcl
25375 dvrec
25472 dvmptsub
25484 dvrecg
25490 dvmptdiv
25491 dvsincos
25498 rolle
25507 vieta1lem2
25824 vieta1
25825 sinmpi
25997 cosmpi
25998 sinppi
25999 cosppi
26000 tanabsge
26016 efeq1
26037 tanord
26047 logtayl
26168 logtayl2
26170 logccv
26171 cxpneg
26189 cxpmul2z
26199 logreclem
26267 cosangneg2d
26312 isosctrlem2
26324 isosctrlem3
26325 angpieqvdlem
26333 quad2
26344 dcubic1lem
26348 dcubic2
26349 dcubic
26351 mcubic
26352 dquartlem1
26356 dquartlem2
26357 dquart
26358 quartlem1
26362 quartlem2
26363 quartlem3
26364 quartlem4
26365 quart
26366 asinlem
26373 asinlem2
26374 asinneg
26391 sinasin
26394 cosasin
26409 atandmneg
26411 tanatan
26424 atandmtan
26425 atantan
26428 atantayl
26442 zetacvg
26519 dmgmaddnn0
26531 lgamgulmlem2
26534 lgamgulmlem4
26536 lgambdd
26541 lgamucov
26542 ftalem4
26580 ftalem5
26581 ftalem7
26583 basellem5
26589 chpdifbndlem1
27056 padicabvcxp
27135 brbtwn2
28194 ipasslem2
30116 pjhthlem1
30675 divnumden2
32055 archirngz
32366 madjusmdetlem4
32841 circlemeth
33683 logdivsqrle
33693 poimirlem29
36565 dvtan
36586 itg2addnclem3
36589 iblsubnc
36597 itgsubnc
36598 itgmulc2nc
36604 ftc1anclem5
36613 ftc1anclem8
36616 dvasin
36620 areacirclem1
36624 lcmineqlem10
40951 lcmineqlem12
40953 dffltz
41424 3cubeslem3r
41473 pell1234qrreccl
41640 pell14qrdich
41655 rmxyneg
41707 acongsym
41763 jm2.26a
41787 jm2.26lem3
41788 expgrowth
43142 binomcxplemdvbinom
43160 binomcxplemnotnn0
43163 sineq0ALT
43746 fzisoeu
44058 fperiodmul
44062 isumneg
44366 climneg
44374 neglimc
44411 sublimc
44416 reclimc
44417 dvcosre
44676 dvcosax
44690 itgsin0pilem1
44714 itgsinexplem1
44718 itgsincmulx
44738 stoweidlem13
44777 stirlinglem5
44842 dirkertrigeqlem3
44864 fourierdlem30
44901 fourierdlem39
44910 fourierdlem40
44911 fourierdlem41
44912 fourierdlem43
44914 fourierdlem47
44917 fourierdlem48
44918 fourierdlem49
44919 fourierdlem73
44943 fourierdlem78
44948 fourierdlem92
44962 fourierdlem101
44971 fourierdlem103
44973 fourierdlem111
44981 sqwvfoura
44992 fouriersw
44995 etransclem17
45015 etransclem18
45016 etransclem23
45021 etransclem46
45044 sigarms
45620 sigaradd
45630 sqrtnegnre
46063 quad1
46336 requad01
46337 requad1
46338 requad2
46339 oexpnegALTV
46393 oexpnegnz
46394 2zrngagrp
46889 altgsumbc
47076 dignn0flhalflem1
47349 line2ylem
47485 itschlc0yqe
47494 itsclc0yqsol
47498 itschlc0xyqsol
47501 amgmwlem
47897 |