MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gt0ne0 Structured version   Visualization version   GIF version

Theorem gt0ne0 11440
Description: Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
gt0ne0 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)

Proof of Theorem gt0ne0
StepHypRef Expression
1 0red 10978 . 2 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2 ltne 11072 . 2 ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
31, 2sylan 580 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wne 2943   class class class wbr 5074  cr 10870  0cc0 10871   < clt 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-addrcl 10932  ax-rnegex 10942  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014
This theorem is referenced by:  recgt0  11821  lemul1  11827  lediv1  11840  gt0div  11841  ge0div  11842  mulge0b  11845  ltdivmul  11850  ledivmul  11851  lt2mul2div  11853  lemuldiv  11855  ltdiv2  11861  ltrec1  11862  lerec2  11863  ledivdiv  11864  lediv2  11865  ltdiv23  11866  lediv23  11867  lediv12a  11868  recreclt  11874  nnrecl  12231  elnnz  12329  recnz  12395  rpne0  12746  divelunit  13226  resqrex  14962  sqrtgt0  14970  argregt0  25765  argimgt0  25767  logneg2  25770  logcnlem3  25799  atanlogsublem  26065  leopmul  30496  cdj1i  30795  lediv2aALT  33635  nndivlub  34647  knoppndvlem15  34706  knoppndvlem17  34708  sineq0ALT  42557  eenglngeehlnmlem1  46083  eenglngeehlnmlem2  46084
  Copyright terms: Public domain W3C validator