![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gt0ne0 | Structured version Visualization version GIF version |
Description: Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
gt0ne0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11262 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | ltne 11356 | . 2 ⊢ ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 ℝcr 11152 0cc0 11153 < clt 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-addrcl 11214 ax-rnegex 11224 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 |
This theorem is referenced by: recgt0 12111 lemul1 12117 lediv1 12131 gt0div 12132 ge0div 12133 mulge0b 12136 ltdivmul 12141 ledivmul 12142 lt2mul2div 12144 lemuldiv 12146 ltdiv2 12152 ltrec1 12153 lerec2 12154 ledivdiv 12155 lediv2 12156 ltdiv23 12157 lediv23 12158 lediv12a 12159 recreclt 12165 nnrecl 12522 elnnz 12621 recnz 12691 rpne0 13049 divelunit 13531 resqrex 15286 sqrtgt0 15294 argregt0 26667 argimgt0 26669 logneg2 26672 logcnlem3 26701 atanlogsublem 26973 leopmul 32163 cdj1i 32462 lediv2aALT 35662 nndivlub 36441 knoppndvlem15 36509 knoppndvlem17 36511 sineq0ALT 44935 eenglngeehlnmlem1 48587 eenglngeehlnmlem2 48588 |
Copyright terms: Public domain | W3C validator |