MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gt0ne0 Structured version   Visualization version   GIF version

Theorem gt0ne0 11755
Description: Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
gt0ne0 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)

Proof of Theorem gt0ne0
StepHypRef Expression
1 0red 11293 . 2 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2 ltne 11387 . 2 ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
31, 2sylan 579 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2946   class class class wbr 5166  cr 11183  0cc0 11184   < clt 11324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-addrcl 11245  ax-rnegex 11255  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329
This theorem is referenced by:  recgt0  12140  lemul1  12146  lediv1  12160  gt0div  12161  ge0div  12162  mulge0b  12165  ltdivmul  12170  ledivmul  12171  lt2mul2div  12173  lemuldiv  12175  ltdiv2  12181  ltrec1  12182  lerec2  12183  ledivdiv  12184  lediv2  12185  ltdiv23  12186  lediv23  12187  lediv12a  12188  recreclt  12194  nnrecl  12551  elnnz  12649  recnz  12718  rpne0  13073  divelunit  13554  resqrex  15299  sqrtgt0  15307  argregt0  26670  argimgt0  26672  logneg2  26675  logcnlem3  26704  atanlogsublem  26976  leopmul  32166  cdj1i  32465  lediv2aALT  35645  nndivlub  36424  knoppndvlem15  36492  knoppndvlem17  36494  sineq0ALT  44908  eenglngeehlnmlem1  48471  eenglngeehlnmlem2  48472
  Copyright terms: Public domain W3C validator