| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gt0ne0 | Structured version Visualization version GIF version | ||
| Description: Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| gt0ne0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red 11137 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
| 2 | ltne 11231 | . 2 ⊢ ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 ℝcr 11027 0cc0 11028 < clt 11168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-addrcl 11089 ax-rnegex 11099 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 |
| This theorem is referenced by: recgt0 11988 lemul1 11994 lediv1 12008 gt0div 12009 ge0div 12010 mulge0b 12013 ltdivmul 12018 ledivmul 12019 lt2mul2div 12021 lemuldiv 12023 ltdiv2 12029 ltrec1 12030 lerec2 12031 ledivdiv 12032 lediv2 12033 ltdiv23 12034 lediv23 12035 lediv12a 12036 recreclt 12042 nnrecl 12400 elnnz 12499 recnz 12569 rpne0 12928 divelunit 13415 resqrex 15175 sqrtgt0 15183 argregt0 26535 argimgt0 26537 logneg2 26540 logcnlem3 26569 atanlogsublem 26841 leopmul 32096 cdj1i 32395 lediv2aALT 35652 nndivlub 36434 knoppndvlem15 36502 knoppndvlem17 36504 sineq0ALT 44913 eenglngeehlnmlem1 48726 eenglngeehlnmlem2 48727 |
| Copyright terms: Public domain | W3C validator |