MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gt0ne0 Structured version   Visualization version   GIF version

Theorem gt0ne0 11702
Description: Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
gt0ne0 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)

Proof of Theorem gt0ne0
StepHypRef Expression
1 0red 11238 . 2 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2 ltne 11332 . 2 ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
31, 2sylan 580 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2932   class class class wbr 5119  cr 11128  0cc0 11129   < clt 11269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-addrcl 11190  ax-rnegex 11200  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274
This theorem is referenced by:  recgt0  12087  lemul1  12093  lediv1  12107  gt0div  12108  ge0div  12109  mulge0b  12112  ltdivmul  12117  ledivmul  12118  lt2mul2div  12120  lemuldiv  12122  ltdiv2  12128  ltrec1  12129  lerec2  12130  ledivdiv  12131  lediv2  12132  ltdiv23  12133  lediv23  12134  lediv12a  12135  recreclt  12141  nnrecl  12499  elnnz  12598  recnz  12668  rpne0  13025  divelunit  13511  resqrex  15269  sqrtgt0  15277  argregt0  26571  argimgt0  26573  logneg2  26576  logcnlem3  26605  atanlogsublem  26877  leopmul  32115  cdj1i  32414  lediv2aALT  35699  nndivlub  36476  knoppndvlem15  36544  knoppndvlem17  36546  sineq0ALT  44961  eenglngeehlnmlem1  48717  eenglngeehlnmlem2  48718
  Copyright terms: Public domain W3C validator