MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gt0ne0 Structured version   Visualization version   GIF version

Theorem gt0ne0 11678
Description: Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
gt0ne0 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)

Proof of Theorem gt0ne0
StepHypRef Expression
1 0red 11216 . 2 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2 ltne 11310 . 2 ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
31, 2sylan 580 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wne 2940   class class class wbr 5148  cr 11108  0cc0 11109   < clt 11247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-addrcl 11170  ax-rnegex 11180  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-ltxr 11252
This theorem is referenced by:  recgt0  12059  lemul1  12065  lediv1  12078  gt0div  12079  ge0div  12080  mulge0b  12083  ltdivmul  12088  ledivmul  12089  lt2mul2div  12091  lemuldiv  12093  ltdiv2  12099  ltrec1  12100  lerec2  12101  ledivdiv  12102  lediv2  12103  ltdiv23  12104  lediv23  12105  lediv12a  12106  recreclt  12112  nnrecl  12469  elnnz  12567  recnz  12636  rpne0  12989  divelunit  13470  resqrex  15196  sqrtgt0  15204  argregt0  26117  argimgt0  26119  logneg2  26122  logcnlem3  26151  atanlogsublem  26417  leopmul  31382  cdj1i  31681  lediv2aALT  34657  nndivlub  35338  knoppndvlem15  35397  knoppndvlem17  35399  sineq0ALT  43688  eenglngeehlnmlem1  47413  eenglngeehlnmlem2  47414
  Copyright terms: Public domain W3C validator