MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gt0ne0 Structured version   Visualization version   GIF version

Theorem gt0ne0 11726
Description: Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
gt0ne0 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)

Proof of Theorem gt0ne0
StepHypRef Expression
1 0red 11262 . 2 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2 ltne 11356 . 2 ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
31, 2sylan 580 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wne 2938   class class class wbr 5148  cr 11152  0cc0 11153   < clt 11293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-addrcl 11214  ax-rnegex 11224  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298
This theorem is referenced by:  recgt0  12111  lemul1  12117  lediv1  12131  gt0div  12132  ge0div  12133  mulge0b  12136  ltdivmul  12141  ledivmul  12142  lt2mul2div  12144  lemuldiv  12146  ltdiv2  12152  ltrec1  12153  lerec2  12154  ledivdiv  12155  lediv2  12156  ltdiv23  12157  lediv23  12158  lediv12a  12159  recreclt  12165  nnrecl  12522  elnnz  12621  recnz  12691  rpne0  13049  divelunit  13531  resqrex  15286  sqrtgt0  15294  argregt0  26667  argimgt0  26669  logneg2  26672  logcnlem3  26701  atanlogsublem  26973  leopmul  32163  cdj1i  32462  lediv2aALT  35662  nndivlub  36441  knoppndvlem15  36509  knoppndvlem17  36511  sineq0ALT  44935  eenglngeehlnmlem1  48587  eenglngeehlnmlem2  48588
  Copyright terms: Public domain W3C validator