Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gt0ne0 | Structured version Visualization version GIF version |
Description: Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
gt0ne0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 10909 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | ltne 11002 | . 2 ⊢ ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ℝcr 10801 0cc0 10802 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: recgt0 11751 lemul1 11757 lediv1 11770 gt0div 11771 ge0div 11772 mulge0b 11775 ltdivmul 11780 ledivmul 11781 lt2mul2div 11783 lemuldiv 11785 ltdiv2 11791 ltrec1 11792 lerec2 11793 ledivdiv 11794 lediv2 11795 ltdiv23 11796 lediv23 11797 lediv12a 11798 recreclt 11804 nnrecl 12161 elnnz 12259 recnz 12325 rpne0 12675 divelunit 13155 resqrex 14890 sqrtgt0 14898 argregt0 25670 argimgt0 25672 logneg2 25675 logcnlem3 25704 atanlogsublem 25970 leopmul 30397 cdj1i 30696 lediv2aALT 33535 nndivlub 34574 knoppndvlem15 34633 knoppndvlem17 34635 sineq0ALT 42446 eenglngeehlnmlem1 45971 eenglngeehlnmlem2 45972 |
Copyright terms: Public domain | W3C validator |