MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gt0ne0 Structured version   Visualization version   GIF version

Theorem gt0ne0 11643
Description: Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
gt0ne0 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)

Proof of Theorem gt0ne0
StepHypRef Expression
1 0red 11177 . 2 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2 ltne 11271 . 2 ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
31, 2sylan 580 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925   class class class wbr 5107  cr 11067  0cc0 11068   < clt 11208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-addrcl 11129  ax-rnegex 11139  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213
This theorem is referenced by:  recgt0  12028  lemul1  12034  lediv1  12048  gt0div  12049  ge0div  12050  mulge0b  12053  ltdivmul  12058  ledivmul  12059  lt2mul2div  12061  lemuldiv  12063  ltdiv2  12069  ltrec1  12070  lerec2  12071  ledivdiv  12072  lediv2  12073  ltdiv23  12074  lediv23  12075  lediv12a  12076  recreclt  12082  nnrecl  12440  elnnz  12539  recnz  12609  rpne0  12968  divelunit  13455  resqrex  15216  sqrtgt0  15224  argregt0  26519  argimgt0  26521  logneg2  26524  logcnlem3  26553  atanlogsublem  26825  leopmul  32063  cdj1i  32362  lediv2aALT  35664  nndivlub  36446  knoppndvlem15  36514  knoppndvlem17  36516  sineq0ALT  44926  eenglngeehlnmlem1  48726  eenglngeehlnmlem2  48727
  Copyright terms: Public domain W3C validator