| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gt0ne0 | Structured version Visualization version GIF version | ||
| Description: Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| gt0ne0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red 11126 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
| 2 | ltne 11221 | . 2 ⊢ ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 ℝcr 11016 0cc0 11017 < clt 11157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-addrcl 11078 ax-rnegex 11088 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 |
| This theorem is referenced by: recgt0 11978 lemul1 11984 lediv1 11998 gt0div 11999 ge0div 12000 mulge0b 12003 ltdivmul 12008 ledivmul 12009 lt2mul2div 12011 lemuldiv 12013 ltdiv2 12019 ltrec1 12020 lerec2 12021 ledivdiv 12022 lediv2 12023 ltdiv23 12024 lediv23 12025 lediv12a 12026 recreclt 12032 nnrecl 12390 elnnz 12489 recnz 12558 rpne0 12913 divelunit 13401 resqrex 15164 sqrtgt0 15172 argregt0 26566 argimgt0 26568 logneg2 26571 logcnlem3 26600 atanlogsublem 26872 leopmul 32135 cdj1i 32434 lediv2aALT 35793 nndivlub 36574 knoppndvlem15 36642 knoppndvlem17 36644 sineq0ALT 45093 eenglngeehlnmlem1 48899 eenglngeehlnmlem2 48900 |
| Copyright terms: Public domain | W3C validator |