Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02plem1 Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02plem1 44167
Description: Lemma 1 for itscnhlinecirc02p 44170. (Contributed by AV, 6-Mar-2023.)
Hypotheses
Ref Expression
2itscp.a (𝜑𝐴 ∈ ℝ)
2itscp.b (𝜑𝐵 ∈ ℝ)
2itscp.x (𝜑𝑋 ∈ ℝ)
2itscp.y (𝜑𝑌 ∈ ℝ)
2itscp.d 𝐷 = (𝑋𝐴)
2itscp.e 𝐸 = (𝐵𝑌)
2itscp.c 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
2itscp.r (𝜑𝑅 ∈ ℝ)
2itscp.l (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))
itscnhlinecirc02plem1.n (𝜑𝐵𝑌)
Assertion
Ref Expression
itscnhlinecirc02plem1 (𝜑 → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))

Proof of Theorem itscnhlinecirc02plem1
StepHypRef Expression
1 4re 11524 . . . . 5 4 ∈ ℝ
21a1i 11 . . . 4 (𝜑 → 4 ∈ ℝ)
3 2itscp.d . . . . . . . 8 𝐷 = (𝑋𝐴)
4 2itscp.x . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
5 2itscp.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
64, 5resubcld 10868 . . . . . . . 8 (𝜑 → (𝑋𝐴) ∈ ℝ)
73, 6syl5eqel 2865 . . . . . . 7 (𝜑𝐷 ∈ ℝ)
87resqcld 13425 . . . . . 6 (𝜑 → (𝐷↑2) ∈ ℝ)
9 2itscp.c . . . . . . . 8 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
10 2itscp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
117, 10remulcld 10469 . . . . . . . . 9 (𝜑 → (𝐷 · 𝐵) ∈ ℝ)
12 2itscp.e . . . . . . . . . . 11 𝐸 = (𝐵𝑌)
13 2itscp.y . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
1410, 13resubcld 10868 . . . . . . . . . . 11 (𝜑 → (𝐵𝑌) ∈ ℝ)
1512, 14syl5eqel 2865 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ)
1615, 5remulcld 10469 . . . . . . . . 9 (𝜑 → (𝐸 · 𝐴) ∈ ℝ)
1711, 16readdcld 10468 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐵) + (𝐸 · 𝐴)) ∈ ℝ)
189, 17syl5eqel 2865 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
1918resqcld 13425 . . . . . 6 (𝜑 → (𝐶↑2) ∈ ℝ)
208, 19remulcld 10469 . . . . 5 (𝜑 → ((𝐷↑2) · (𝐶↑2)) ∈ ℝ)
2115resqcld 13425 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℝ)
2221, 8readdcld 10468 . . . . . 6 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℝ)
23 2itscp.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ)
2423resqcld 13425 . . . . . . . 8 (𝜑 → (𝑅↑2) ∈ ℝ)
2521, 24remulcld 10469 . . . . . . 7 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℝ)
2619, 25resubcld 10868 . . . . . 6 (𝜑 → ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))) ∈ ℝ)
2722, 26remulcld 10469 . . . . 5 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))) ∈ ℝ)
2820, 27resubcld 10868 . . . 4 (𝜑 → (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) ∈ ℝ)
29 4pos 11553 . . . . 5 0 < 4
3029a1i 11 . . . 4 (𝜑 → 0 < 4)
318, 24remulcld 10469 . . . . . . . . 9 (𝜑 → ((𝐷↑2) · (𝑅↑2)) ∈ ℝ)
3225, 31readdcld 10468 . . . . . . . 8 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) ∈ ℝ)
3332, 19resubcld 10868 . . . . . . 7 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2)) ∈ ℝ)
3412a1i 11 . . . . . . . . 9 (𝜑𝐸 = (𝐵𝑌))
3510recnd 10467 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
3613recnd 10467 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
37 itscnhlinecirc02plem1.n . . . . . . . . . 10 (𝜑𝐵𝑌)
3835, 36, 37subne0d 10806 . . . . . . . . 9 (𝜑 → (𝐵𝑌) ≠ 0)
3934, 38eqnetrd 3029 . . . . . . . 8 (𝜑𝐸 ≠ 0)
4015, 39sqgt0d 13427 . . . . . . 7 (𝜑 → 0 < (𝐸↑2))
41 2itscp.l . . . . . . . . 9 (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))
4237orcd 860 . . . . . . . . 9 (𝜑 → (𝐵𝑌𝐴𝑋))
43 eqid 2773 . . . . . . . . 9 ((𝐸↑2) + (𝐷↑2)) = ((𝐸↑2) + (𝐷↑2))
44 eqid 2773 . . . . . . . . 9 (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2)) = (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2))
455, 10, 4, 13, 3, 12, 9, 23, 41, 42, 43, 442itscp 44166 . . . . . . . 8 (𝜑 → 0 < (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2)))
4621recnd 10467 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℂ)
478recnd 10467 . . . . . . . . . . 11 (𝜑 → (𝐷↑2) ∈ ℂ)
4824recnd 10467 . . . . . . . . . . 11 (𝜑 → (𝑅↑2) ∈ ℂ)
4946, 47, 48adddird 10464 . . . . . . . . . 10 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · (𝑅↑2)) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))))
5046, 47addcld 10458 . . . . . . . . . . 11 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℂ)
5150, 48mulcomd 10460 . . . . . . . . . 10 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · (𝑅↑2)) = ((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))))
5249, 51eqtr3d 2811 . . . . . . . . 9 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) = ((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))))
5352oveq1d 6990 . . . . . . . 8 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2)) = (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2)))
5445, 53breqtrrd 4954 . . . . . . 7 (𝜑 → 0 < ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2)))
5521, 33, 40, 54mulgt0d 10594 . . . . . 6 (𝜑 → 0 < ((𝐸↑2) · ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2))))
5647, 46, 48mul12d 10648 . . . . . . . . . 10 (𝜑 → ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2))) = ((𝐸↑2) · ((𝐷↑2) · (𝑅↑2))))
5756oveq2d 6991 . . . . . . . . 9 (𝜑 → (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) = (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐸↑2) · ((𝐷↑2) · (𝑅↑2)))))
5846, 48mulcld 10459 . . . . . . . . . 10 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
5947, 48mulcld 10459 . . . . . . . . . 10 (𝜑 → ((𝐷↑2) · (𝑅↑2)) ∈ ℂ)
6046, 58, 59adddid 10463 . . . . . . . . 9 (𝜑 → ((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))) = (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐸↑2) · ((𝐷↑2) · (𝑅↑2)))))
6157, 60eqtr4d 2812 . . . . . . . 8 (𝜑 → (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) = ((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))))
6261oveq1d 6990 . . . . . . 7 (𝜑 → ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))) = (((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
6358, 59addcld 10458 . . . . . . . 8 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) ∈ ℂ)
6419recnd 10467 . . . . . . . 8 (𝜑 → (𝐶↑2) ∈ ℂ)
6546, 63, 64subdid 10896 . . . . . . 7 (𝜑 → ((𝐸↑2) · ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2))) = (((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
6662, 65eqtr4d 2812 . . . . . 6 (𝜑 → ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))) = ((𝐸↑2) · ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2))))
6755, 66breqtrrd 4954 . . . . 5 (𝜑 → 0 < ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
6815recnd 10467 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
6968sqcld 13322 . . . . . 6 (𝜑 → (𝐸↑2) ∈ ℂ)
707recnd 10467 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
7170sqcld 13322 . . . . . 6 (𝜑 → (𝐷↑2) ∈ ℂ)
7225recnd 10467 . . . . . 6 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
73 mulsubaddmulsub 10904 . . . . . 6 ((((𝐸↑2) ∈ ℂ ∧ (𝐷↑2) ∈ ℂ) ∧ ((𝐶↑2) ∈ ℂ ∧ ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)) → (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) = ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
7469, 71, 64, 72, 73syl22anc 827 . . . . 5 (𝜑 → (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) = ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
7567, 74breqtrrd 4954 . . . 4 (𝜑 → 0 < (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))))
762, 28, 30, 75mulgt0d 10594 . . 3 (𝜑 → 0 < (4 · (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
77 4cn 11525 . . . . 5 4 ∈ ℂ
7877a1i 11 . . . 4 (𝜑 → 4 ∈ ℂ)
7918recnd 10467 . . . . . 6 (𝜑𝐶 ∈ ℂ)
8079sqcld 13322 . . . . 5 (𝜑 → (𝐶↑2) ∈ ℂ)
8171, 80mulcld 10459 . . . 4 (𝜑 → ((𝐷↑2) · (𝐶↑2)) ∈ ℂ)
8269, 71addcld 10458 . . . . 5 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℂ)
8323recnd 10467 . . . . . . . 8 (𝜑𝑅 ∈ ℂ)
8483sqcld 13322 . . . . . . 7 (𝜑 → (𝑅↑2) ∈ ℂ)
8569, 84mulcld 10459 . . . . . 6 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
8680, 85subcld 10797 . . . . 5 (𝜑 → ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))) ∈ ℂ)
8782, 86mulcld 10459 . . . 4 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))) ∈ ℂ)
8878, 81, 87subdid 10896 . . 3 (𝜑 → (4 · (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((4 · ((𝐷↑2) · (𝐶↑2))) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
8976, 88breqtrd 4952 . 2 (𝜑 → 0 < ((4 · ((𝐷↑2) · (𝐶↑2))) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
90 2cnd 11517 . . . . . 6 (𝜑 → 2 ∈ ℂ)
9170, 79mulcld 10459 . . . . . 6 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
9290, 91mulcld 10459 . . . . 5 (𝜑 → (2 · (𝐷 · 𝐶)) ∈ ℂ)
93 sqneg 13296 . . . . 5 ((2 · (𝐷 · 𝐶)) ∈ ℂ → (-(2 · (𝐷 · 𝐶))↑2) = ((2 · (𝐷 · 𝐶))↑2))
9492, 93syl 17 . . . 4 (𝜑 → (-(2 · (𝐷 · 𝐶))↑2) = ((2 · (𝐷 · 𝐶))↑2))
9590, 91sqmuld 13336 . . . 4 (𝜑 → ((2 · (𝐷 · 𝐶))↑2) = ((2↑2) · ((𝐷 · 𝐶)↑2)))
96 sq2 13374 . . . . . 6 (2↑2) = 4
9796a1i 11 . . . . 5 (𝜑 → (2↑2) = 4)
9870, 79sqmuld 13336 . . . . 5 (𝜑 → ((𝐷 · 𝐶)↑2) = ((𝐷↑2) · (𝐶↑2)))
9997, 98oveq12d 6993 . . . 4 (𝜑 → ((2↑2) · ((𝐷 · 𝐶)↑2)) = (4 · ((𝐷↑2) · (𝐶↑2))))
10094, 95, 993eqtrd 2813 . . 3 (𝜑 → (-(2 · (𝐷 · 𝐶))↑2) = (4 · ((𝐷↑2) · (𝐶↑2))))
101100oveq1d 6990 . 2 (𝜑 → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((4 · ((𝐷↑2) · (𝐶↑2))) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
10289, 101breqtrrd 4954 1 (𝜑 → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1508  wcel 2051  wne 2962   class class class wbr 4926  (class class class)co 6975  cc 10332  cr 10333  0cc0 10334   + caddc 10337   · cmul 10339   < clt 10473  cmin 10669  -cneg 10670  2c2 11494  4c4 11496  cexp 13243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-2 11502  df-3 11503  df-4 11504  df-n0 11707  df-z 11793  df-uz 12058  df-rp 12204  df-seq 13184  df-exp 13244
This theorem is referenced by:  itscnhlinecirc02plem2  44168
  Copyright terms: Public domain W3C validator