Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02plem1 Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02plem1 44776
Description: Lemma 1 for itscnhlinecirc02p 44779. (Contributed by AV, 6-Mar-2023.)
Hypotheses
Ref Expression
2itscp.a (𝜑𝐴 ∈ ℝ)
2itscp.b (𝜑𝐵 ∈ ℝ)
2itscp.x (𝜑𝑋 ∈ ℝ)
2itscp.y (𝜑𝑌 ∈ ℝ)
2itscp.d 𝐷 = (𝑋𝐴)
2itscp.e 𝐸 = (𝐵𝑌)
2itscp.c 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
2itscp.r (𝜑𝑅 ∈ ℝ)
2itscp.l (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))
itscnhlinecirc02plem1.n (𝜑𝐵𝑌)
Assertion
Ref Expression
itscnhlinecirc02plem1 (𝜑 → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))

Proof of Theorem itscnhlinecirc02plem1
StepHypRef Expression
1 4re 11724 . . . . 5 4 ∈ ℝ
21a1i 11 . . . 4 (𝜑 → 4 ∈ ℝ)
3 2itscp.d . . . . . . . 8 𝐷 = (𝑋𝐴)
4 2itscp.x . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
5 2itscp.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
64, 5resubcld 11071 . . . . . . . 8 (𝜑 → (𝑋𝐴) ∈ ℝ)
73, 6eqeltrid 2920 . . . . . . 7 (𝜑𝐷 ∈ ℝ)
87resqcld 13614 . . . . . 6 (𝜑 → (𝐷↑2) ∈ ℝ)
9 2itscp.c . . . . . . . 8 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
10 2itscp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
117, 10remulcld 10674 . . . . . . . . 9 (𝜑 → (𝐷 · 𝐵) ∈ ℝ)
12 2itscp.e . . . . . . . . . . 11 𝐸 = (𝐵𝑌)
13 2itscp.y . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
1410, 13resubcld 11071 . . . . . . . . . . 11 (𝜑 → (𝐵𝑌) ∈ ℝ)
1512, 14eqeltrid 2920 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ)
1615, 5remulcld 10674 . . . . . . . . 9 (𝜑 → (𝐸 · 𝐴) ∈ ℝ)
1711, 16readdcld 10673 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐵) + (𝐸 · 𝐴)) ∈ ℝ)
189, 17eqeltrid 2920 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
1918resqcld 13614 . . . . . 6 (𝜑 → (𝐶↑2) ∈ ℝ)
208, 19remulcld 10674 . . . . 5 (𝜑 → ((𝐷↑2) · (𝐶↑2)) ∈ ℝ)
2115resqcld 13614 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℝ)
2221, 8readdcld 10673 . . . . . 6 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℝ)
23 2itscp.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ)
2423resqcld 13614 . . . . . . . 8 (𝜑 → (𝑅↑2) ∈ ℝ)
2521, 24remulcld 10674 . . . . . . 7 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℝ)
2619, 25resubcld 11071 . . . . . 6 (𝜑 → ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))) ∈ ℝ)
2722, 26remulcld 10674 . . . . 5 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))) ∈ ℝ)
2820, 27resubcld 11071 . . . 4 (𝜑 → (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) ∈ ℝ)
29 4pos 11747 . . . . 5 0 < 4
3029a1i 11 . . . 4 (𝜑 → 0 < 4)
318, 24remulcld 10674 . . . . . . . . 9 (𝜑 → ((𝐷↑2) · (𝑅↑2)) ∈ ℝ)
3225, 31readdcld 10673 . . . . . . . 8 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) ∈ ℝ)
3332, 19resubcld 11071 . . . . . . 7 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2)) ∈ ℝ)
3412a1i 11 . . . . . . . . 9 (𝜑𝐸 = (𝐵𝑌))
3510recnd 10672 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
3613recnd 10672 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
37 itscnhlinecirc02plem1.n . . . . . . . . . 10 (𝜑𝐵𝑌)
3835, 36, 37subne0d 11009 . . . . . . . . 9 (𝜑 → (𝐵𝑌) ≠ 0)
3934, 38eqnetrd 3086 . . . . . . . 8 (𝜑𝐸 ≠ 0)
4015, 39sqgt0d 13616 . . . . . . 7 (𝜑 → 0 < (𝐸↑2))
41 2itscp.l . . . . . . . . 9 (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))
4237orcd 869 . . . . . . . . 9 (𝜑 → (𝐵𝑌𝐴𝑋))
43 eqid 2824 . . . . . . . . 9 ((𝐸↑2) + (𝐷↑2)) = ((𝐸↑2) + (𝐷↑2))
44 eqid 2824 . . . . . . . . 9 (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2)) = (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2))
455, 10, 4, 13, 3, 12, 9, 23, 41, 42, 43, 442itscp 44775 . . . . . . . 8 (𝜑 → 0 < (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2)))
4621recnd 10672 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℂ)
478recnd 10672 . . . . . . . . . . 11 (𝜑 → (𝐷↑2) ∈ ℂ)
4824recnd 10672 . . . . . . . . . . 11 (𝜑 → (𝑅↑2) ∈ ℂ)
4946, 47, 48adddird 10669 . . . . . . . . . 10 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · (𝑅↑2)) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))))
5046, 47addcld 10663 . . . . . . . . . . 11 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℂ)
5150, 48mulcomd 10665 . . . . . . . . . 10 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · (𝑅↑2)) = ((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))))
5249, 51eqtr3d 2861 . . . . . . . . 9 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) = ((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))))
5352oveq1d 7174 . . . . . . . 8 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2)) = (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2)))
5445, 53breqtrrd 5097 . . . . . . 7 (𝜑 → 0 < ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2)))
5521, 33, 40, 54mulgt0d 10798 . . . . . 6 (𝜑 → 0 < ((𝐸↑2) · ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2))))
5647, 46, 48mul12d 10852 . . . . . . . . . 10 (𝜑 → ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2))) = ((𝐸↑2) · ((𝐷↑2) · (𝑅↑2))))
5756oveq2d 7175 . . . . . . . . 9 (𝜑 → (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) = (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐸↑2) · ((𝐷↑2) · (𝑅↑2)))))
5846, 48mulcld 10664 . . . . . . . . . 10 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
5947, 48mulcld 10664 . . . . . . . . . 10 (𝜑 → ((𝐷↑2) · (𝑅↑2)) ∈ ℂ)
6046, 58, 59adddid 10668 . . . . . . . . 9 (𝜑 → ((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))) = (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐸↑2) · ((𝐷↑2) · (𝑅↑2)))))
6157, 60eqtr4d 2862 . . . . . . . 8 (𝜑 → (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) = ((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))))
6261oveq1d 7174 . . . . . . 7 (𝜑 → ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))) = (((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
6358, 59addcld 10663 . . . . . . . 8 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) ∈ ℂ)
6419recnd 10672 . . . . . . . 8 (𝜑 → (𝐶↑2) ∈ ℂ)
6546, 63, 64subdid 11099 . . . . . . 7 (𝜑 → ((𝐸↑2) · ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2))) = (((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
6662, 65eqtr4d 2862 . . . . . 6 (𝜑 → ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))) = ((𝐸↑2) · ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2))))
6755, 66breqtrrd 5097 . . . . 5 (𝜑 → 0 < ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
6815recnd 10672 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
6968sqcld 13511 . . . . . 6 (𝜑 → (𝐸↑2) ∈ ℂ)
707recnd 10672 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
7170sqcld 13511 . . . . . 6 (𝜑 → (𝐷↑2) ∈ ℂ)
7225recnd 10672 . . . . . 6 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
73 mulsubaddmulsub 11107 . . . . . 6 ((((𝐸↑2) ∈ ℂ ∧ (𝐷↑2) ∈ ℂ) ∧ ((𝐶↑2) ∈ ℂ ∧ ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)) → (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) = ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
7469, 71, 64, 72, 73syl22anc 836 . . . . 5 (𝜑 → (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) = ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
7567, 74breqtrrd 5097 . . . 4 (𝜑 → 0 < (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))))
762, 28, 30, 75mulgt0d 10798 . . 3 (𝜑 → 0 < (4 · (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
77 4cn 11725 . . . . 5 4 ∈ ℂ
7877a1i 11 . . . 4 (𝜑 → 4 ∈ ℂ)
7918recnd 10672 . . . . . 6 (𝜑𝐶 ∈ ℂ)
8079sqcld 13511 . . . . 5 (𝜑 → (𝐶↑2) ∈ ℂ)
8171, 80mulcld 10664 . . . 4 (𝜑 → ((𝐷↑2) · (𝐶↑2)) ∈ ℂ)
8269, 71addcld 10663 . . . . 5 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℂ)
8323recnd 10672 . . . . . . . 8 (𝜑𝑅 ∈ ℂ)
8483sqcld 13511 . . . . . . 7 (𝜑 → (𝑅↑2) ∈ ℂ)
8569, 84mulcld 10664 . . . . . 6 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
8680, 85subcld 11000 . . . . 5 (𝜑 → ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))) ∈ ℂ)
8782, 86mulcld 10664 . . . 4 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))) ∈ ℂ)
8878, 81, 87subdid 11099 . . 3 (𝜑 → (4 · (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((4 · ((𝐷↑2) · (𝐶↑2))) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
8976, 88breqtrd 5095 . 2 (𝜑 → 0 < ((4 · ((𝐷↑2) · (𝐶↑2))) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
90 2cnd 11718 . . . . . 6 (𝜑 → 2 ∈ ℂ)
9170, 79mulcld 10664 . . . . . 6 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
9290, 91mulcld 10664 . . . . 5 (𝜑 → (2 · (𝐷 · 𝐶)) ∈ ℂ)
93 sqneg 13485 . . . . 5 ((2 · (𝐷 · 𝐶)) ∈ ℂ → (-(2 · (𝐷 · 𝐶))↑2) = ((2 · (𝐷 · 𝐶))↑2))
9492, 93syl 17 . . . 4 (𝜑 → (-(2 · (𝐷 · 𝐶))↑2) = ((2 · (𝐷 · 𝐶))↑2))
9590, 91sqmuld 13525 . . . 4 (𝜑 → ((2 · (𝐷 · 𝐶))↑2) = ((2↑2) · ((𝐷 · 𝐶)↑2)))
96 sq2 13563 . . . . . 6 (2↑2) = 4
9796a1i 11 . . . . 5 (𝜑 → (2↑2) = 4)
9870, 79sqmuld 13525 . . . . 5 (𝜑 → ((𝐷 · 𝐶)↑2) = ((𝐷↑2) · (𝐶↑2)))
9997, 98oveq12d 7177 . . . 4 (𝜑 → ((2↑2) · ((𝐷 · 𝐶)↑2)) = (4 · ((𝐷↑2) · (𝐶↑2))))
10094, 95, 993eqtrd 2863 . . 3 (𝜑 → (-(2 · (𝐷 · 𝐶))↑2) = (4 · ((𝐷↑2) · (𝐶↑2))))
101100oveq1d 7174 . 2 (𝜑 → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((4 · ((𝐷↑2) · (𝐶↑2))) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
10289, 101breqtrrd 5097 1 (𝜑 → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  wne 3019   class class class wbr 5069  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540   + caddc 10543   · cmul 10545   < clt 10678  cmin 10873  -cneg 10874  2c2 11695  4c4 11697  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433
This theorem is referenced by:  itscnhlinecirc02plem2  44777
  Copyright terms: Public domain W3C validator