Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02plem1 Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02plem1 48632
Description: Lemma 1 for itscnhlinecirc02p 48635. (Contributed by AV, 6-Mar-2023.)
Hypotheses
Ref Expression
2itscp.a (𝜑𝐴 ∈ ℝ)
2itscp.b (𝜑𝐵 ∈ ℝ)
2itscp.x (𝜑𝑋 ∈ ℝ)
2itscp.y (𝜑𝑌 ∈ ℝ)
2itscp.d 𝐷 = (𝑋𝐴)
2itscp.e 𝐸 = (𝐵𝑌)
2itscp.c 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
2itscp.r (𝜑𝑅 ∈ ℝ)
2itscp.l (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))
itscnhlinecirc02plem1.n (𝜑𝐵𝑌)
Assertion
Ref Expression
itscnhlinecirc02plem1 (𝜑 → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))

Proof of Theorem itscnhlinecirc02plem1
StepHypRef Expression
1 4re 12348 . . . . 5 4 ∈ ℝ
21a1i 11 . . . 4 (𝜑 → 4 ∈ ℝ)
3 2itscp.d . . . . . . . 8 𝐷 = (𝑋𝐴)
4 2itscp.x . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
5 2itscp.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
64, 5resubcld 11689 . . . . . . . 8 (𝜑 → (𝑋𝐴) ∈ ℝ)
73, 6eqeltrid 2843 . . . . . . 7 (𝜑𝐷 ∈ ℝ)
87resqcld 14162 . . . . . 6 (𝜑 → (𝐷↑2) ∈ ℝ)
9 2itscp.c . . . . . . . 8 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
10 2itscp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
117, 10remulcld 11289 . . . . . . . . 9 (𝜑 → (𝐷 · 𝐵) ∈ ℝ)
12 2itscp.e . . . . . . . . . . 11 𝐸 = (𝐵𝑌)
13 2itscp.y . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
1410, 13resubcld 11689 . . . . . . . . . . 11 (𝜑 → (𝐵𝑌) ∈ ℝ)
1512, 14eqeltrid 2843 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ)
1615, 5remulcld 11289 . . . . . . . . 9 (𝜑 → (𝐸 · 𝐴) ∈ ℝ)
1711, 16readdcld 11288 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐵) + (𝐸 · 𝐴)) ∈ ℝ)
189, 17eqeltrid 2843 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
1918resqcld 14162 . . . . . 6 (𝜑 → (𝐶↑2) ∈ ℝ)
208, 19remulcld 11289 . . . . 5 (𝜑 → ((𝐷↑2) · (𝐶↑2)) ∈ ℝ)
2115resqcld 14162 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℝ)
2221, 8readdcld 11288 . . . . . 6 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℝ)
23 2itscp.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ)
2423resqcld 14162 . . . . . . . 8 (𝜑 → (𝑅↑2) ∈ ℝ)
2521, 24remulcld 11289 . . . . . . 7 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℝ)
2619, 25resubcld 11689 . . . . . 6 (𝜑 → ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))) ∈ ℝ)
2722, 26remulcld 11289 . . . . 5 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))) ∈ ℝ)
2820, 27resubcld 11689 . . . 4 (𝜑 → (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) ∈ ℝ)
29 4pos 12371 . . . . 5 0 < 4
3029a1i 11 . . . 4 (𝜑 → 0 < 4)
318, 24remulcld 11289 . . . . . . . . 9 (𝜑 → ((𝐷↑2) · (𝑅↑2)) ∈ ℝ)
3225, 31readdcld 11288 . . . . . . . 8 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) ∈ ℝ)
3332, 19resubcld 11689 . . . . . . 7 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2)) ∈ ℝ)
3412a1i 11 . . . . . . . . 9 (𝜑𝐸 = (𝐵𝑌))
3510recnd 11287 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
3613recnd 11287 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
37 itscnhlinecirc02plem1.n . . . . . . . . . 10 (𝜑𝐵𝑌)
3835, 36, 37subne0d 11627 . . . . . . . . 9 (𝜑 → (𝐵𝑌) ≠ 0)
3934, 38eqnetrd 3006 . . . . . . . 8 (𝜑𝐸 ≠ 0)
4015, 39sqgt0d 14286 . . . . . . 7 (𝜑 → 0 < (𝐸↑2))
41 2itscp.l . . . . . . . . 9 (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))
4237orcd 873 . . . . . . . . 9 (𝜑 → (𝐵𝑌𝐴𝑋))
43 eqid 2735 . . . . . . . . 9 ((𝐸↑2) + (𝐷↑2)) = ((𝐸↑2) + (𝐷↑2))
44 eqid 2735 . . . . . . . . 9 (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2)) = (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2))
455, 10, 4, 13, 3, 12, 9, 23, 41, 42, 43, 442itscp 48631 . . . . . . . 8 (𝜑 → 0 < (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2)))
4621recnd 11287 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℂ)
478recnd 11287 . . . . . . . . . . 11 (𝜑 → (𝐷↑2) ∈ ℂ)
4824recnd 11287 . . . . . . . . . . 11 (𝜑 → (𝑅↑2) ∈ ℂ)
4946, 47, 48adddird 11284 . . . . . . . . . 10 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · (𝑅↑2)) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))))
5046, 47addcld 11278 . . . . . . . . . . 11 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℂ)
5150, 48mulcomd 11280 . . . . . . . . . 10 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · (𝑅↑2)) = ((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))))
5249, 51eqtr3d 2777 . . . . . . . . 9 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) = ((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))))
5352oveq1d 7446 . . . . . . . 8 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2)) = (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2)))
5445, 53breqtrrd 5176 . . . . . . 7 (𝜑 → 0 < ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2)))
5521, 33, 40, 54mulgt0d 11414 . . . . . 6 (𝜑 → 0 < ((𝐸↑2) · ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2))))
5647, 46, 48mul12d 11468 . . . . . . . . . 10 (𝜑 → ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2))) = ((𝐸↑2) · ((𝐷↑2) · (𝑅↑2))))
5756oveq2d 7447 . . . . . . . . 9 (𝜑 → (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) = (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐸↑2) · ((𝐷↑2) · (𝑅↑2)))))
5846, 48mulcld 11279 . . . . . . . . . 10 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
5947, 48mulcld 11279 . . . . . . . . . 10 (𝜑 → ((𝐷↑2) · (𝑅↑2)) ∈ ℂ)
6046, 58, 59adddid 11283 . . . . . . . . 9 (𝜑 → ((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))) = (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐸↑2) · ((𝐷↑2) · (𝑅↑2)))))
6157, 60eqtr4d 2778 . . . . . . . 8 (𝜑 → (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) = ((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))))
6261oveq1d 7446 . . . . . . 7 (𝜑 → ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))) = (((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
6358, 59addcld 11278 . . . . . . . 8 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) ∈ ℂ)
6419recnd 11287 . . . . . . . 8 (𝜑 → (𝐶↑2) ∈ ℂ)
6546, 63, 64subdid 11717 . . . . . . 7 (𝜑 → ((𝐸↑2) · ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2))) = (((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
6662, 65eqtr4d 2778 . . . . . 6 (𝜑 → ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))) = ((𝐸↑2) · ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2))))
6755, 66breqtrrd 5176 . . . . 5 (𝜑 → 0 < ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
6815recnd 11287 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
6968sqcld 14181 . . . . . 6 (𝜑 → (𝐸↑2) ∈ ℂ)
707recnd 11287 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
7170sqcld 14181 . . . . . 6 (𝜑 → (𝐷↑2) ∈ ℂ)
7225recnd 11287 . . . . . 6 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
73 mulsubaddmulsub 11725 . . . . . 6 ((((𝐸↑2) ∈ ℂ ∧ (𝐷↑2) ∈ ℂ) ∧ ((𝐶↑2) ∈ ℂ ∧ ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)) → (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) = ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
7469, 71, 64, 72, 73syl22anc 839 . . . . 5 (𝜑 → (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) = ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
7567, 74breqtrrd 5176 . . . 4 (𝜑 → 0 < (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))))
762, 28, 30, 75mulgt0d 11414 . . 3 (𝜑 → 0 < (4 · (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
77 4cn 12349 . . . . 5 4 ∈ ℂ
7877a1i 11 . . . 4 (𝜑 → 4 ∈ ℂ)
7918recnd 11287 . . . . . 6 (𝜑𝐶 ∈ ℂ)
8079sqcld 14181 . . . . 5 (𝜑 → (𝐶↑2) ∈ ℂ)
8171, 80mulcld 11279 . . . 4 (𝜑 → ((𝐷↑2) · (𝐶↑2)) ∈ ℂ)
8269, 71addcld 11278 . . . . 5 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℂ)
8323recnd 11287 . . . . . . . 8 (𝜑𝑅 ∈ ℂ)
8483sqcld 14181 . . . . . . 7 (𝜑 → (𝑅↑2) ∈ ℂ)
8569, 84mulcld 11279 . . . . . 6 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
8680, 85subcld 11618 . . . . 5 (𝜑 → ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))) ∈ ℂ)
8782, 86mulcld 11279 . . . 4 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))) ∈ ℂ)
8878, 81, 87subdid 11717 . . 3 (𝜑 → (4 · (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((4 · ((𝐷↑2) · (𝐶↑2))) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
8976, 88breqtrd 5174 . 2 (𝜑 → 0 < ((4 · ((𝐷↑2) · (𝐶↑2))) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
90 2cnd 12342 . . . . . 6 (𝜑 → 2 ∈ ℂ)
9170, 79mulcld 11279 . . . . . 6 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
9290, 91mulcld 11279 . . . . 5 (𝜑 → (2 · (𝐷 · 𝐶)) ∈ ℂ)
93 sqneg 14153 . . . . 5 ((2 · (𝐷 · 𝐶)) ∈ ℂ → (-(2 · (𝐷 · 𝐶))↑2) = ((2 · (𝐷 · 𝐶))↑2))
9492, 93syl 17 . . . 4 (𝜑 → (-(2 · (𝐷 · 𝐶))↑2) = ((2 · (𝐷 · 𝐶))↑2))
9590, 91sqmuld 14195 . . . 4 (𝜑 → ((2 · (𝐷 · 𝐶))↑2) = ((2↑2) · ((𝐷 · 𝐶)↑2)))
96 sq2 14233 . . . . . 6 (2↑2) = 4
9796a1i 11 . . . . 5 (𝜑 → (2↑2) = 4)
9870, 79sqmuld 14195 . . . . 5 (𝜑 → ((𝐷 · 𝐶)↑2) = ((𝐷↑2) · (𝐶↑2)))
9997, 98oveq12d 7449 . . . 4 (𝜑 → ((2↑2) · ((𝐷 · 𝐶)↑2)) = (4 · ((𝐷↑2) · (𝐶↑2))))
10094, 95, 993eqtrd 2779 . . 3 (𝜑 → (-(2 · (𝐷 · 𝐶))↑2) = (4 · ((𝐷↑2) · (𝐶↑2))))
101100oveq1d 7446 . 2 (𝜑 → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((4 · ((𝐷↑2) · (𝐶↑2))) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
10289, 101breqtrrd 5176 1 (𝜑 → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153   + caddc 11156   · cmul 11158   < clt 11293  cmin 11490  -cneg 11491  2c2 12319  4c4 12321  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100
This theorem is referenced by:  itscnhlinecirc02plem2  48633
  Copyright terms: Public domain W3C validator