![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qnegcl | Structured version Visualization version GIF version |
Description: Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
qnegcl | ⊢ (𝐴 ∈ ℚ → -𝐴 ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 12932 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
2 | zcn 12561 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ) |
4 | nncn 12218 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ) |
6 | nnne0 12244 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ≠ 0) | |
7 | 6 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑦 ≠ 0) |
8 | 3, 5, 7 | divnegd 12001 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → -(𝑥 / 𝑦) = (-𝑥 / 𝑦)) |
9 | znegcl 12595 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
10 | znq 12934 | . . . . . 6 ⊢ ((-𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (-𝑥 / 𝑦) ∈ ℚ) | |
11 | 9, 10 | sylan 579 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (-𝑥 / 𝑦) ∈ ℚ) |
12 | 8, 11 | eqeltrd 2825 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → -(𝑥 / 𝑦) ∈ ℚ) |
13 | negeq 11450 | . . . . 5 ⊢ (𝐴 = (𝑥 / 𝑦) → -𝐴 = -(𝑥 / 𝑦)) | |
14 | 13 | eleq1d 2810 | . . . 4 ⊢ (𝐴 = (𝑥 / 𝑦) → (-𝐴 ∈ ℚ ↔ -(𝑥 / 𝑦) ∈ ℚ)) |
15 | 12, 14 | syl5ibrcom 246 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → -𝐴 ∈ ℚ)) |
16 | 15 | rexlimivv 3191 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → -𝐴 ∈ ℚ) |
17 | 1, 16 | sylbi 216 | 1 ⊢ (𝐴 ∈ ℚ → -𝐴 ∈ ℚ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∃wrex 3062 (class class class)co 7402 ℂcc 11105 0cc0 11107 -cneg 11443 / cdiv 11869 ℕcn 12210 ℤcz 12556 ℚcq 12930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-z 12557 df-q 12931 |
This theorem is referenced by: qsubcl 12950 pcadd2 16824 qsubdrg 21283 vitalilem1 25461 qaa 26179 numdenneg 32493 3cubes 41942 rmxyneg 42173 mpaaeu 42406 |
Copyright terms: Public domain | W3C validator |