MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcneg Structured version   Visualization version   GIF version

Theorem pcneg 16845
Description: The prime count of a negative number. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
pcneg ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴))

Proof of Theorem pcneg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12909 . . 3 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 zcn 12534 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
32ad2antrl 728 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥 ∈ ℂ)
4 nncn 12194 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
54ad2antll 729 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ ℂ)
6 nnne0 12220 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
76ad2antll 729 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ≠ 0)
83, 5, 7divnegd 11971 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → -(𝑥 / 𝑦) = (-𝑥 / 𝑦))
98oveq2d 7403 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt -(𝑥 / 𝑦)) = (𝑃 pCnt (-𝑥 / 𝑦)))
10 neg0 11468 . . . . . . . . . 10 -0 = 0
11 simpr 484 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → 𝑥 = 0)
1211negeqd 11415 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → -𝑥 = -0)
1310, 12, 113eqtr4a 2790 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → -𝑥 = 𝑥)
1413oveq1d 7402 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → (-𝑥 / 𝑦) = (𝑥 / 𝑦))
1514oveq2d 7403 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → (𝑃 pCnt (-𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦)))
16 simpll 766 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑃 ∈ ℙ)
17 simplrl 776 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑥 ∈ ℤ)
1817znegcld 12640 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → -𝑥 ∈ ℤ)
19 simpr 484 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑥 ≠ 0)
202negne0bd 11526 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (𝑥 ≠ 0 ↔ -𝑥 ≠ 0))
2117, 20syl 17 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑥 ≠ 0 ↔ -𝑥 ≠ 0))
2219, 21mpbid 232 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → -𝑥 ≠ 0)
23 simplrr 777 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑦 ∈ ℕ)
24 pcdiv 16823 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (-𝑥 ∈ ℤ ∧ -𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (-𝑥 / 𝑦)) = ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦)))
2516, 18, 22, 23, 24syl121anc 1377 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (-𝑥 / 𝑦)) = ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦)))
26 pcdiv 16823 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
2716, 17, 19, 23, 26syl121anc 1377 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
28 eqid 2729 . . . . . . . . . . . . 13 sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < )
2928pczpre 16818 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (-𝑥 ∈ ℤ ∧ -𝑥 ≠ 0)) → (𝑃 pCnt -𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
3016, 18, 22, 29syl12anc 836 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt -𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
31 eqid 2729 . . . . . . . . . . . . . 14 sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥}, ℝ, < ) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥}, ℝ, < )
3231pczpre 16818 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥}, ℝ, < ))
33 prmz 16645 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
34 zexpcl 14041 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑃𝑦) ∈ ℤ)
3533, 34sylan 580 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ0) → (𝑃𝑦) ∈ ℤ)
36 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → 𝑥 ∈ ℤ)
37 dvdsnegb 16243 . . . . . . . . . . . . . . . . 17 (((𝑃𝑦) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑃𝑦) ∥ 𝑥 ↔ (𝑃𝑦) ∥ -𝑥))
3835, 36, 37syl2an 596 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ0) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → ((𝑃𝑦) ∥ 𝑥 ↔ (𝑃𝑦) ∥ -𝑥))
3938an32s 652 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑃𝑦) ∥ 𝑥 ↔ (𝑃𝑦) ∥ -𝑥))
4039rabbidva 3412 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → {𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥} = {𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥})
4140supeq1d 9397 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥}, ℝ, < ) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
4232, 41eqtrd 2764 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
4316, 17, 19, 42syl12anc 836 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt 𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
4430, 43eqtr4d 2767 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt -𝑥) = (𝑃 pCnt 𝑥))
4544oveq1d 7402 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
4627, 45eqtr4d 2767 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦)))
4725, 46eqtr4d 2767 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (-𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦)))
4815, 47pm2.61dane 3012 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt (-𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦)))
499, 48eqtrd 2764 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt -(𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦)))
50 negeq 11413 . . . . . . 7 (𝐴 = (𝑥 / 𝑦) → -𝐴 = -(𝑥 / 𝑦))
5150oveq2d 7403 . . . . . 6 (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt -𝐴) = (𝑃 pCnt -(𝑥 / 𝑦)))
52 oveq2 7395 . . . . . 6 (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝑥 / 𝑦)))
5351, 52eqeq12d 2745 . . . . 5 (𝐴 = (𝑥 / 𝑦) → ((𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴) ↔ (𝑃 pCnt -(𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦))))
5449, 53syl5ibrcom 247 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴)))
5554rexlimdvva 3194 . . 3 (𝑃 ∈ ℙ → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴)))
561, 55biimtrid 242 . 2 (𝑃 ∈ ℙ → (𝐴 ∈ ℚ → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴)))
5756imp 406 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405   class class class wbr 5107  (class class class)co 7387  supcsup 9391  cc 11066  cr 11067  0cc0 11068   < clt 11208  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  cq 12907  cexp 14026  cdvds 16222  cprime 16641   pCnt cpc 16807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808
This theorem is referenced by:  pcabs  16846  pcadd2  16861  lgsneg  27232
  Copyright terms: Public domain W3C validator