MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lognegb Structured version   Visualization version   GIF version

Theorem lognegb 25179
Description: If a number has imaginary part equal to π, then it is on the negative real axis and vice-versa. (Contributed by Mario Carneiro, 23-Sep-2014.)
Assertion
Ref Expression
lognegb ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))

Proof of Theorem lognegb
StepHypRef Expression
1 logneg 25177 . . . . 5 (-𝐴 ∈ ℝ+ → (log‘--𝐴) = ((log‘-𝐴) + (i · π)))
21fveq2d 6663 . . . 4 (-𝐴 ∈ ℝ+ → (ℑ‘(log‘--𝐴)) = (ℑ‘((log‘-𝐴) + (i · π))))
3 relogcl 25165 . . . . 5 (-𝐴 ∈ ℝ+ → (log‘-𝐴) ∈ ℝ)
4 pire 25049 . . . . 5 π ∈ ℝ
5 crim 14472 . . . . 5 (((log‘-𝐴) ∈ ℝ ∧ π ∈ ℝ) → (ℑ‘((log‘-𝐴) + (i · π))) = π)
63, 4, 5sylancl 589 . . . 4 (-𝐴 ∈ ℝ+ → (ℑ‘((log‘-𝐴) + (i · π))) = π)
72, 6eqtrd 2859 . . 3 (-𝐴 ∈ ℝ+ → (ℑ‘(log‘--𝐴)) = π)
8 negneg 10930 . . . . . 6 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
98adantr 484 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → --𝐴 = 𝐴)
109fveq2d 6663 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘--𝐴) = (log‘𝐴))
1110fveqeq2d 6667 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘--𝐴)) = π ↔ (ℑ‘(log‘𝐴)) = π))
127, 11syl5ib 247 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ → (ℑ‘(log‘𝐴)) = π))
13 logcl 25158 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
1413replimd 14554 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) = ((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴)))))
1514fveq2d 6663 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = (exp‘((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴))))))
16 eflog 25166 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
1713recld 14551 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℝ)
1817recnd 10663 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℂ)
19 ax-icn 10590 . . . . . . 7 i ∈ ℂ
2013imcld 14552 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
2120recnd 10663 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
22 mulcl 10615 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
2319, 21, 22sylancr 590 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
24 efadd 15445 . . . . . 6 (((ℜ‘(log‘𝐴)) ∈ ℂ ∧ (i · (ℑ‘(log‘𝐴))) ∈ ℂ) → (exp‘((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴))))) = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴))))))
2518, 23, 24syl2anc 587 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴))))) = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴))))))
2615, 16, 253eqtr3d 2867 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴))))))
27 oveq2 7154 . . . . . . . 8 ((ℑ‘(log‘𝐴)) = π → (i · (ℑ‘(log‘𝐴))) = (i · π))
2827fveq2d 6663 . . . . . . 7 ((ℑ‘(log‘𝐴)) = π → (exp‘(i · (ℑ‘(log‘𝐴)))) = (exp‘(i · π)))
29 efipi 25064 . . . . . . 7 (exp‘(i · π)) = -1
3028, 29syl6eq 2875 . . . . . 6 ((ℑ‘(log‘𝐴)) = π → (exp‘(i · (ℑ‘(log‘𝐴)))) = -1)
3130oveq2d 7162 . . . . 5 ((ℑ‘(log‘𝐴)) = π → ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴))))) = ((exp‘(ℜ‘(log‘𝐴))) · -1))
3231eqeq2d 2835 . . . 4 ((ℑ‘(log‘𝐴)) = π → (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴))))) ↔ 𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1)))
3326, 32syl5ibcom 248 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘𝐴)) = π → 𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1)))
3417rpefcld 15456 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘(log‘𝐴))) ∈ ℝ+)
3534rpcnd 12428 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘(log‘𝐴))) ∈ ℂ)
36 neg1cn 11746 . . . . . . . . 9 -1 ∈ ℂ
37 mulcom 10617 . . . . . . . . 9 (((exp‘(ℜ‘(log‘𝐴))) ∈ ℂ ∧ -1 ∈ ℂ) → ((exp‘(ℜ‘(log‘𝐴))) · -1) = (-1 · (exp‘(ℜ‘(log‘𝐴)))))
3835, 36, 37sylancl 589 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp‘(ℜ‘(log‘𝐴))) · -1) = (-1 · (exp‘(ℜ‘(log‘𝐴)))))
3935mulm1d 11086 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-1 · (exp‘(ℜ‘(log‘𝐴)))) = -(exp‘(ℜ‘(log‘𝐴))))
4038, 39eqtrd 2859 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp‘(ℜ‘(log‘𝐴))) · -1) = -(exp‘(ℜ‘(log‘𝐴))))
4140negeqd 10874 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -((exp‘(ℜ‘(log‘𝐴))) · -1) = --(exp‘(ℜ‘(log‘𝐴))))
4235negnegd 10982 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → --(exp‘(ℜ‘(log‘𝐴))) = (exp‘(ℜ‘(log‘𝐴))))
4341, 42eqtrd 2859 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -((exp‘(ℜ‘(log‘𝐴))) · -1) = (exp‘(ℜ‘(log‘𝐴))))
4443, 34eqeltrd 2916 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -((exp‘(ℜ‘(log‘𝐴))) · -1) ∈ ℝ+)
45 negeq 10872 . . . . 5 (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1) → -𝐴 = -((exp‘(ℜ‘(log‘𝐴))) · -1))
4645eleq1d 2900 . . . 4 (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1) → (-𝐴 ∈ ℝ+ ↔ -((exp‘(ℜ‘(log‘𝐴))) · -1) ∈ ℝ+))
4744, 46syl5ibrcom 250 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1) → -𝐴 ∈ ℝ+))
4833, 47syld 47 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘𝐴)) = π → -𝐴 ∈ ℝ+))
4912, 48impbid 215 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  cfv 6344  (class class class)co 7146  cc 10529  cr 10530  0cc0 10531  1c1 10532  ici 10533   + caddc 10534   · cmul 10536  -cneg 10865  +crp 12384  cre 14454  cim 14455  expce 15413  πcpi 15418  logclog 25144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-inf2 9097  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-of 7400  df-om 7572  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8827  df-fi 8868  df-sup 8899  df-inf 8900  df-oi 8967  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-z 11977  df-dec 12094  df-uz 12239  df-q 12344  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ioc 12738  df-ico 12739  df-icc 12740  df-fz 12893  df-fzo 13036  df-fl 13164  df-mod 13240  df-seq 13372  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14424  df-cj 14456  df-re 14457  df-im 14458  df-sqrt 14592  df-abs 14593  df-limsup 14826  df-clim 14843  df-rlim 14844  df-sum 15041  df-ef 15419  df-sin 15421  df-cos 15422  df-pi 15424  df-struct 16483  df-ndx 16484  df-slot 16485  df-base 16487  df-sets 16488  df-ress 16489  df-plusg 16576  df-mulr 16577  df-starv 16578  df-sca 16579  df-vsca 16580  df-ip 16581  df-tset 16582  df-ple 16583  df-ds 16585  df-unif 16586  df-hom 16587  df-cco 16588  df-rest 16694  df-topn 16695  df-0g 16713  df-gsum 16714  df-topgen 16715  df-pt 16716  df-prds 16719  df-xrs 16773  df-qtop 16778  df-imas 16779  df-xps 16781  df-mre 16855  df-mrc 16856  df-acs 16858  df-mgm 17850  df-sgrp 17899  df-mnd 17910  df-submnd 17955  df-mulg 18223  df-cntz 18445  df-cmn 18906  df-psmet 20532  df-xmet 20533  df-met 20534  df-bl 20535  df-mopn 20536  df-fbas 20537  df-fg 20538  df-cnfld 20541  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lp 21739  df-perf 21740  df-cn 21830  df-cnp 21831  df-haus 21918  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-xms 22925  df-ms 22926  df-tms 22927  df-cncf 23481  df-limc 24467  df-dv 24468  df-log 25146
This theorem is referenced by:  logcj  25195  argimgt0  25201  dvloglem  25237  logf1o2  25239  logrec  25347  ang180lem2  25394  angpieqvdlem2  25413  asinneg  25470
  Copyright terms: Public domain W3C validator