| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lognegb | Structured version Visualization version GIF version | ||
| Description: If a number has imaginary part equal to π, then it is on the negative real axis and vice-versa. (Contributed by Mario Carneiro, 23-Sep-2014.) |
| Ref | Expression |
|---|---|
| lognegb | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logneg 26525 | . . . . 5 ⊢ (-𝐴 ∈ ℝ+ → (log‘--𝐴) = ((log‘-𝐴) + (i · π))) | |
| 2 | 1 | fveq2d 6832 | . . . 4 ⊢ (-𝐴 ∈ ℝ+ → (ℑ‘(log‘--𝐴)) = (ℑ‘((log‘-𝐴) + (i · π)))) |
| 3 | relogcl 26512 | . . . . 5 ⊢ (-𝐴 ∈ ℝ+ → (log‘-𝐴) ∈ ℝ) | |
| 4 | pire 26394 | . . . . 5 ⊢ π ∈ ℝ | |
| 5 | crim 15024 | . . . . 5 ⊢ (((log‘-𝐴) ∈ ℝ ∧ π ∈ ℝ) → (ℑ‘((log‘-𝐴) + (i · π))) = π) | |
| 6 | 3, 4, 5 | sylancl 586 | . . . 4 ⊢ (-𝐴 ∈ ℝ+ → (ℑ‘((log‘-𝐴) + (i · π))) = π) |
| 7 | 2, 6 | eqtrd 2768 | . . 3 ⊢ (-𝐴 ∈ ℝ+ → (ℑ‘(log‘--𝐴)) = π) |
| 8 | negneg 11418 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → --𝐴 = 𝐴) |
| 10 | 9 | fveq2d 6832 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘--𝐴) = (log‘𝐴)) |
| 11 | 10 | fveqeq2d 6836 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘--𝐴)) = π ↔ (ℑ‘(log‘𝐴)) = π)) |
| 12 | 7, 11 | imbitrid 244 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ → (ℑ‘(log‘𝐴)) = π)) |
| 13 | logcl 26505 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ) | |
| 14 | 13 | replimd 15106 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) = ((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴))))) |
| 15 | 14 | fveq2d 6832 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = (exp‘((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴)))))) |
| 16 | eflog 26513 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) | |
| 17 | 13 | recld 15103 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℝ) |
| 18 | 17 | recnd 11147 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℂ) |
| 19 | ax-icn 11072 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 20 | 13 | imcld 15104 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ) |
| 21 | 20 | recnd 11147 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ) |
| 22 | mulcl 11097 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ) | |
| 23 | 19, 21, 22 | sylancr 587 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ) |
| 24 | efadd 16003 | . . . . . 6 ⊢ (((ℜ‘(log‘𝐴)) ∈ ℂ ∧ (i · (ℑ‘(log‘𝐴))) ∈ ℂ) → (exp‘((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴))))) = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴)))))) | |
| 25 | 18, 23, 24 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴))))) = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴)))))) |
| 26 | 15, 16, 25 | 3eqtr3d 2776 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴)))))) |
| 27 | oveq2 7360 | . . . . . . . 8 ⊢ ((ℑ‘(log‘𝐴)) = π → (i · (ℑ‘(log‘𝐴))) = (i · π)) | |
| 28 | 27 | fveq2d 6832 | . . . . . . 7 ⊢ ((ℑ‘(log‘𝐴)) = π → (exp‘(i · (ℑ‘(log‘𝐴)))) = (exp‘(i · π))) |
| 29 | efipi 26410 | . . . . . . 7 ⊢ (exp‘(i · π)) = -1 | |
| 30 | 28, 29 | eqtrdi 2784 | . . . . . 6 ⊢ ((ℑ‘(log‘𝐴)) = π → (exp‘(i · (ℑ‘(log‘𝐴)))) = -1) |
| 31 | 30 | oveq2d 7368 | . . . . 5 ⊢ ((ℑ‘(log‘𝐴)) = π → ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴))))) = ((exp‘(ℜ‘(log‘𝐴))) · -1)) |
| 32 | 31 | eqeq2d 2744 | . . . 4 ⊢ ((ℑ‘(log‘𝐴)) = π → (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴))))) ↔ 𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1))) |
| 33 | 26, 32 | syl5ibcom 245 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘𝐴)) = π → 𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1))) |
| 34 | 17 | rpefcld 16016 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘(log‘𝐴))) ∈ ℝ+) |
| 35 | 34 | rpcnd 12938 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘(log‘𝐴))) ∈ ℂ) |
| 36 | neg1cn 12117 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
| 37 | mulcom 11099 | . . . . . . . . 9 ⊢ (((exp‘(ℜ‘(log‘𝐴))) ∈ ℂ ∧ -1 ∈ ℂ) → ((exp‘(ℜ‘(log‘𝐴))) · -1) = (-1 · (exp‘(ℜ‘(log‘𝐴))))) | |
| 38 | 35, 36, 37 | sylancl 586 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp‘(ℜ‘(log‘𝐴))) · -1) = (-1 · (exp‘(ℜ‘(log‘𝐴))))) |
| 39 | 35 | mulm1d 11576 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-1 · (exp‘(ℜ‘(log‘𝐴)))) = -(exp‘(ℜ‘(log‘𝐴)))) |
| 40 | 38, 39 | eqtrd 2768 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp‘(ℜ‘(log‘𝐴))) · -1) = -(exp‘(ℜ‘(log‘𝐴)))) |
| 41 | 40 | negeqd 11361 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -((exp‘(ℜ‘(log‘𝐴))) · -1) = --(exp‘(ℜ‘(log‘𝐴)))) |
| 42 | 35 | negnegd 11470 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → --(exp‘(ℜ‘(log‘𝐴))) = (exp‘(ℜ‘(log‘𝐴)))) |
| 43 | 41, 42 | eqtrd 2768 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -((exp‘(ℜ‘(log‘𝐴))) · -1) = (exp‘(ℜ‘(log‘𝐴)))) |
| 44 | 43, 34 | eqeltrd 2833 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -((exp‘(ℜ‘(log‘𝐴))) · -1) ∈ ℝ+) |
| 45 | negeq 11359 | . . . . 5 ⊢ (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1) → -𝐴 = -((exp‘(ℜ‘(log‘𝐴))) · -1)) | |
| 46 | 45 | eleq1d 2818 | . . . 4 ⊢ (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1) → (-𝐴 ∈ ℝ+ ↔ -((exp‘(ℜ‘(log‘𝐴))) · -1) ∈ ℝ+)) |
| 47 | 44, 46 | syl5ibrcom 247 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1) → -𝐴 ∈ ℝ+)) |
| 48 | 33, 47 | syld 47 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘𝐴)) = π → -𝐴 ∈ ℝ+)) |
| 49 | 12, 48 | impbid 212 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 ℝcr 11012 0cc0 11013 1c1 11014 ici 11015 + caddc 11016 · cmul 11018 -cneg 11352 ℝ+crp 12892 ℜcre 15006 ℑcim 15007 expce 15970 πcpi 15975 logclog 26491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-fac 14183 df-bc 14212 df-hash 14240 df-shft 14976 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-ef 15976 df-sin 15978 df-cos 15979 df-pi 15981 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 df-log 26493 |
| This theorem is referenced by: logcj 26543 argimgt0 26549 dvloglem 26585 logf1o2 26587 logrec 26701 ang180lem2 26748 angpieqvdlem2 26767 asinneg 26824 arginv 32735 |
| Copyright terms: Public domain | W3C validator |