![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lognegb | Structured version Visualization version GIF version |
Description: If a number has imaginary part equal to π, then it is on the negative real axis and vice-versa. (Contributed by Mario Carneiro, 23-Sep-2014.) |
Ref | Expression |
---|---|
lognegb | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logneg 26645 | . . . . 5 ⊢ (-𝐴 ∈ ℝ+ → (log‘--𝐴) = ((log‘-𝐴) + (i · π))) | |
2 | 1 | fveq2d 6911 | . . . 4 ⊢ (-𝐴 ∈ ℝ+ → (ℑ‘(log‘--𝐴)) = (ℑ‘((log‘-𝐴) + (i · π)))) |
3 | relogcl 26632 | . . . . 5 ⊢ (-𝐴 ∈ ℝ+ → (log‘-𝐴) ∈ ℝ) | |
4 | pire 26515 | . . . . 5 ⊢ π ∈ ℝ | |
5 | crim 15151 | . . . . 5 ⊢ (((log‘-𝐴) ∈ ℝ ∧ π ∈ ℝ) → (ℑ‘((log‘-𝐴) + (i · π))) = π) | |
6 | 3, 4, 5 | sylancl 586 | . . . 4 ⊢ (-𝐴 ∈ ℝ+ → (ℑ‘((log‘-𝐴) + (i · π))) = π) |
7 | 2, 6 | eqtrd 2775 | . . 3 ⊢ (-𝐴 ∈ ℝ+ → (ℑ‘(log‘--𝐴)) = π) |
8 | negneg 11557 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → --𝐴 = 𝐴) |
10 | 9 | fveq2d 6911 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘--𝐴) = (log‘𝐴)) |
11 | 10 | fveqeq2d 6915 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘--𝐴)) = π ↔ (ℑ‘(log‘𝐴)) = π)) |
12 | 7, 11 | imbitrid 244 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ → (ℑ‘(log‘𝐴)) = π)) |
13 | logcl 26625 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ) | |
14 | 13 | replimd 15233 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) = ((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴))))) |
15 | 14 | fveq2d 6911 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = (exp‘((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴)))))) |
16 | eflog 26633 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) | |
17 | 13 | recld 15230 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℝ) |
18 | 17 | recnd 11287 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℂ) |
19 | ax-icn 11212 | . . . . . . 7 ⊢ i ∈ ℂ | |
20 | 13 | imcld 15231 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ) |
21 | 20 | recnd 11287 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ) |
22 | mulcl 11237 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ) | |
23 | 19, 21, 22 | sylancr 587 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ) |
24 | efadd 16127 | . . . . . 6 ⊢ (((ℜ‘(log‘𝐴)) ∈ ℂ ∧ (i · (ℑ‘(log‘𝐴))) ∈ ℂ) → (exp‘((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴))))) = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴)))))) | |
25 | 18, 23, 24 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴))))) = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴)))))) |
26 | 15, 16, 25 | 3eqtr3d 2783 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴)))))) |
27 | oveq2 7439 | . . . . . . . 8 ⊢ ((ℑ‘(log‘𝐴)) = π → (i · (ℑ‘(log‘𝐴))) = (i · π)) | |
28 | 27 | fveq2d 6911 | . . . . . . 7 ⊢ ((ℑ‘(log‘𝐴)) = π → (exp‘(i · (ℑ‘(log‘𝐴)))) = (exp‘(i · π))) |
29 | efipi 26530 | . . . . . . 7 ⊢ (exp‘(i · π)) = -1 | |
30 | 28, 29 | eqtrdi 2791 | . . . . . 6 ⊢ ((ℑ‘(log‘𝐴)) = π → (exp‘(i · (ℑ‘(log‘𝐴)))) = -1) |
31 | 30 | oveq2d 7447 | . . . . 5 ⊢ ((ℑ‘(log‘𝐴)) = π → ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴))))) = ((exp‘(ℜ‘(log‘𝐴))) · -1)) |
32 | 31 | eqeq2d 2746 | . . . 4 ⊢ ((ℑ‘(log‘𝐴)) = π → (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴))))) ↔ 𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1))) |
33 | 26, 32 | syl5ibcom 245 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘𝐴)) = π → 𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1))) |
34 | 17 | rpefcld 16138 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘(log‘𝐴))) ∈ ℝ+) |
35 | 34 | rpcnd 13077 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘(log‘𝐴))) ∈ ℂ) |
36 | neg1cn 12378 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
37 | mulcom 11239 | . . . . . . . . 9 ⊢ (((exp‘(ℜ‘(log‘𝐴))) ∈ ℂ ∧ -1 ∈ ℂ) → ((exp‘(ℜ‘(log‘𝐴))) · -1) = (-1 · (exp‘(ℜ‘(log‘𝐴))))) | |
38 | 35, 36, 37 | sylancl 586 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp‘(ℜ‘(log‘𝐴))) · -1) = (-1 · (exp‘(ℜ‘(log‘𝐴))))) |
39 | 35 | mulm1d 11713 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-1 · (exp‘(ℜ‘(log‘𝐴)))) = -(exp‘(ℜ‘(log‘𝐴)))) |
40 | 38, 39 | eqtrd 2775 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp‘(ℜ‘(log‘𝐴))) · -1) = -(exp‘(ℜ‘(log‘𝐴)))) |
41 | 40 | negeqd 11500 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -((exp‘(ℜ‘(log‘𝐴))) · -1) = --(exp‘(ℜ‘(log‘𝐴)))) |
42 | 35 | negnegd 11609 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → --(exp‘(ℜ‘(log‘𝐴))) = (exp‘(ℜ‘(log‘𝐴)))) |
43 | 41, 42 | eqtrd 2775 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -((exp‘(ℜ‘(log‘𝐴))) · -1) = (exp‘(ℜ‘(log‘𝐴)))) |
44 | 43, 34 | eqeltrd 2839 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -((exp‘(ℜ‘(log‘𝐴))) · -1) ∈ ℝ+) |
45 | negeq 11498 | . . . . 5 ⊢ (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1) → -𝐴 = -((exp‘(ℜ‘(log‘𝐴))) · -1)) | |
46 | 45 | eleq1d 2824 | . . . 4 ⊢ (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1) → (-𝐴 ∈ ℝ+ ↔ -((exp‘(ℜ‘(log‘𝐴))) · -1) ∈ ℝ+)) |
47 | 44, 46 | syl5ibrcom 247 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1) → -𝐴 ∈ ℝ+)) |
48 | 33, 47 | syld 47 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘𝐴)) = π → -𝐴 ∈ ℝ+)) |
49 | 12, 48 | impbid 212 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 ici 11155 + caddc 11156 · cmul 11158 -cneg 11491 ℝ+crp 13032 ℜcre 15133 ℑcim 15134 expce 16094 πcpi 16099 logclog 26611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 df-sin 16102 df-cos 16103 df-pi 16105 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-limc 25916 df-dv 25917 df-log 26613 |
This theorem is referenced by: logcj 26663 argimgt0 26669 dvloglem 26705 logf1o2 26707 logrec 26821 ang180lem2 26868 angpieqvdlem2 26887 asinneg 26944 |
Copyright terms: Public domain | W3C validator |