MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lognegb Structured version   Visualization version   GIF version

Theorem lognegb 26612
Description: If a number has imaginary part equal to π, then it is on the negative real axis and vice-versa. (Contributed by Mario Carneiro, 23-Sep-2014.)
Assertion
Ref Expression
lognegb ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))

Proof of Theorem lognegb
StepHypRef Expression
1 logneg 26610 . . . . 5 (-𝐴 ∈ ℝ+ → (log‘--𝐴) = ((log‘-𝐴) + (i · π)))
21fveq2d 6895 . . . 4 (-𝐴 ∈ ℝ+ → (ℑ‘(log‘--𝐴)) = (ℑ‘((log‘-𝐴) + (i · π))))
3 relogcl 26597 . . . . 5 (-𝐴 ∈ ℝ+ → (log‘-𝐴) ∈ ℝ)
4 pire 26481 . . . . 5 π ∈ ℝ
5 crim 15113 . . . . 5 (((log‘-𝐴) ∈ ℝ ∧ π ∈ ℝ) → (ℑ‘((log‘-𝐴) + (i · π))) = π)
63, 4, 5sylancl 584 . . . 4 (-𝐴 ∈ ℝ+ → (ℑ‘((log‘-𝐴) + (i · π))) = π)
72, 6eqtrd 2766 . . 3 (-𝐴 ∈ ℝ+ → (ℑ‘(log‘--𝐴)) = π)
8 negneg 11549 . . . . . 6 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
98adantr 479 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → --𝐴 = 𝐴)
109fveq2d 6895 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘--𝐴) = (log‘𝐴))
1110fveqeq2d 6899 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘--𝐴)) = π ↔ (ℑ‘(log‘𝐴)) = π))
127, 11imbitrid 243 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ → (ℑ‘(log‘𝐴)) = π))
13 logcl 26590 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
1413replimd 15195 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) = ((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴)))))
1514fveq2d 6895 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = (exp‘((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴))))))
16 eflog 26598 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
1713recld 15192 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℝ)
1817recnd 11281 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℂ)
19 ax-icn 11206 . . . . . . 7 i ∈ ℂ
2013imcld 15193 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
2120recnd 11281 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
22 mulcl 11231 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
2319, 21, 22sylancr 585 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
24 efadd 16089 . . . . . 6 (((ℜ‘(log‘𝐴)) ∈ ℂ ∧ (i · (ℑ‘(log‘𝐴))) ∈ ℂ) → (exp‘((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴))))) = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴))))))
2518, 23, 24syl2anc 582 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴))))) = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴))))))
2615, 16, 253eqtr3d 2774 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴))))))
27 oveq2 7422 . . . . . . . 8 ((ℑ‘(log‘𝐴)) = π → (i · (ℑ‘(log‘𝐴))) = (i · π))
2827fveq2d 6895 . . . . . . 7 ((ℑ‘(log‘𝐴)) = π → (exp‘(i · (ℑ‘(log‘𝐴)))) = (exp‘(i · π)))
29 efipi 26496 . . . . . . 7 (exp‘(i · π)) = -1
3028, 29eqtrdi 2782 . . . . . 6 ((ℑ‘(log‘𝐴)) = π → (exp‘(i · (ℑ‘(log‘𝐴)))) = -1)
3130oveq2d 7430 . . . . 5 ((ℑ‘(log‘𝐴)) = π → ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴))))) = ((exp‘(ℜ‘(log‘𝐴))) · -1))
3231eqeq2d 2737 . . . 4 ((ℑ‘(log‘𝐴)) = π → (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · (exp‘(i · (ℑ‘(log‘𝐴))))) ↔ 𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1)))
3326, 32syl5ibcom 244 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘𝐴)) = π → 𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1)))
3417rpefcld 16100 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘(log‘𝐴))) ∈ ℝ+)
3534rpcnd 13064 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘(log‘𝐴))) ∈ ℂ)
36 neg1cn 12370 . . . . . . . . 9 -1 ∈ ℂ
37 mulcom 11233 . . . . . . . . 9 (((exp‘(ℜ‘(log‘𝐴))) ∈ ℂ ∧ -1 ∈ ℂ) → ((exp‘(ℜ‘(log‘𝐴))) · -1) = (-1 · (exp‘(ℜ‘(log‘𝐴)))))
3835, 36, 37sylancl 584 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp‘(ℜ‘(log‘𝐴))) · -1) = (-1 · (exp‘(ℜ‘(log‘𝐴)))))
3935mulm1d 11705 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-1 · (exp‘(ℜ‘(log‘𝐴)))) = -(exp‘(ℜ‘(log‘𝐴))))
4038, 39eqtrd 2766 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp‘(ℜ‘(log‘𝐴))) · -1) = -(exp‘(ℜ‘(log‘𝐴))))
4140negeqd 11493 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -((exp‘(ℜ‘(log‘𝐴))) · -1) = --(exp‘(ℜ‘(log‘𝐴))))
4235negnegd 11601 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → --(exp‘(ℜ‘(log‘𝐴))) = (exp‘(ℜ‘(log‘𝐴))))
4341, 42eqtrd 2766 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -((exp‘(ℜ‘(log‘𝐴))) · -1) = (exp‘(ℜ‘(log‘𝐴))))
4443, 34eqeltrd 2826 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -((exp‘(ℜ‘(log‘𝐴))) · -1) ∈ ℝ+)
45 negeq 11491 . . . . 5 (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1) → -𝐴 = -((exp‘(ℜ‘(log‘𝐴))) · -1))
4645eleq1d 2811 . . . 4 (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1) → (-𝐴 ∈ ℝ+ ↔ -((exp‘(ℜ‘(log‘𝐴))) · -1) ∈ ℝ+))
4744, 46syl5ibrcom 246 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 = ((exp‘(ℜ‘(log‘𝐴))) · -1) → -𝐴 ∈ ℝ+))
4833, 47syld 47 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘𝐴)) = π → -𝐴 ∈ ℝ+))
4912, 48impbid 211 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  cfv 6544  (class class class)co 7414  cc 11145  cr 11146  0cc0 11147  1c1 11148  ici 11149   + caddc 11150   · cmul 11152  -cneg 11484  +crp 13020  cre 15095  cim 15096  expce 16056  πcpi 16061  logclog 26576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-inf2 9675  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224  ax-pre-sup 11225  ax-addf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-iin 4997  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9397  df-fi 9445  df-sup 9476  df-inf 9477  df-oi 9544  df-card 9973  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-div 11911  df-nn 12257  df-2 12319  df-3 12320  df-4 12321  df-5 12322  df-6 12323  df-7 12324  df-8 12325  df-9 12326  df-n0 12517  df-z 12603  df-dec 12722  df-uz 12867  df-q 12977  df-rp 13021  df-xneg 13138  df-xadd 13139  df-xmul 13140  df-ioo 13374  df-ioc 13375  df-ico 13376  df-icc 13377  df-fz 13531  df-fzo 13674  df-fl 13804  df-mod 13882  df-seq 14014  df-exp 14074  df-fac 14284  df-bc 14313  df-hash 14341  df-shft 15065  df-cj 15097  df-re 15098  df-im 15099  df-sqrt 15233  df-abs 15234  df-limsup 15466  df-clim 15483  df-rlim 15484  df-sum 15684  df-ef 16062  df-sin 16064  df-cos 16065  df-pi 16067  df-struct 17142  df-sets 17159  df-slot 17177  df-ndx 17189  df-base 17207  df-ress 17236  df-plusg 17272  df-mulr 17273  df-starv 17274  df-sca 17275  df-vsca 17276  df-ip 17277  df-tset 17278  df-ple 17279  df-ds 17281  df-unif 17282  df-hom 17283  df-cco 17284  df-rest 17430  df-topn 17431  df-0g 17449  df-gsum 17450  df-topgen 17451  df-pt 17452  df-prds 17455  df-xrs 17510  df-qtop 17515  df-imas 17516  df-xps 17518  df-mre 17592  df-mrc 17593  df-acs 17595  df-mgm 18626  df-sgrp 18705  df-mnd 18721  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19774  df-psmet 21329  df-xmet 21330  df-met 21331  df-bl 21332  df-mopn 21333  df-fbas 21334  df-fg 21335  df-cnfld 21338  df-top 22882  df-topon 22899  df-topsp 22921  df-bases 22935  df-cld 23009  df-ntr 23010  df-cls 23011  df-nei 23088  df-lp 23126  df-perf 23127  df-cn 23217  df-cnp 23218  df-haus 23305  df-tx 23552  df-hmeo 23745  df-fil 23836  df-fm 23928  df-flim 23929  df-flf 23930  df-xms 24312  df-ms 24313  df-tms 24314  df-cncf 24884  df-limc 25881  df-dv 25882  df-log 26578
This theorem is referenced by:  logcj  26628  argimgt0  26634  dvloglem  26670  logf1o2  26672  logrec  26786  ang180lem2  26833  angpieqvdlem2  26852  asinneg  26909
  Copyright terms: Public domain W3C validator