Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noetalem5 Structured version   Visualization version   GIF version

Theorem noetalem5 33105
Description: Lemma for noeta 33106. The full statement of the theorem with hypotheses. (Contributed by Scott Fenton, 7-Dec-2021.)
Hypotheses
Ref Expression
noetalem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetalem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetalem5 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∃𝑧 No (∀𝑎𝐴 𝑎 <s 𝑧 ∧ ∀𝑏𝐵 𝑧 <s 𝑏 ∧ ( bday 𝑧) ⊆ suc ( bday “ (𝐴𝐵))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑔   𝑢,𝑎,𝐴,𝑣,𝑥,𝑦   𝑧,𝑎,𝐴   𝐵,𝑎,𝑏   𝑔,𝑏,𝑥   𝑧,𝑏,𝐵   𝑢,𝑔,𝑣,𝑥,𝑦   𝑆,𝑎,𝑔   𝑣,𝑢,𝑥,𝑦   𝑍,𝑎,𝑏,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑧,𝑣,𝑢,𝑏)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑢,𝑔,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑧,𝑣,𝑢,𝑔,𝑎,𝑏)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetalem5
StepHypRef Expression
1 elex 3518 . . 3 (𝐴𝑉𝐴 ∈ V)
21anim2i 616 . 2 ((𝐴 No 𝐴𝑉) → (𝐴 No 𝐴 ∈ V))
3 elex 3518 . . 3 (𝐵𝑊𝐵 ∈ V)
43anim2i 616 . 2 ((𝐵 No 𝐵𝑊) → (𝐵 No 𝐵 ∈ V))
5 id 22 . 2 (∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 → ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏)
6 simp1l 1191 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → 𝐴 No )
7 simp1r 1192 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → 𝐴 ∈ V)
8 simp2r 1194 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → 𝐵 ∈ V)
9 noetalem.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
10 noetalem.2 . . . . 5 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
119, 10noetalem1 33101 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
126, 7, 8, 11syl3anc 1365 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → 𝑍 No )
13 simplll 771 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝐴 No )
14 simpllr 772 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝐴 ∈ V)
15 simplrr 774 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝐵 ∈ V)
16 simpr 485 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝑎𝐴)
179, 10noetalem2 33102 . . . . . 6 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑎𝐴) → 𝑎 <s 𝑍)
1813, 14, 15, 16, 17syl31anc 1367 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝑎 <s 𝑍)
1918ralrimiva 3187 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → ∀𝑎𝐴 𝑎 <s 𝑍)
20193adant3 1126 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑎𝐴 𝑎 <s 𝑍)
219, 10noetalem3 33103 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑏𝐵 𝑍 <s 𝑏)
229, 10noetalem4 33104 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → ( bday 𝑍) ⊆ suc ( bday “ (𝐴𝐵)))
23223adant3 1126 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ( bday 𝑍) ⊆ suc ( bday “ (𝐴𝐵)))
24 breq2 5067 . . . . . 6 (𝑧 = 𝑍 → (𝑎 <s 𝑧𝑎 <s 𝑍))
2524ralbidv 3202 . . . . 5 (𝑧 = 𝑍 → (∀𝑎𝐴 𝑎 <s 𝑧 ↔ ∀𝑎𝐴 𝑎 <s 𝑍))
26 breq1 5066 . . . . . 6 (𝑧 = 𝑍 → (𝑧 <s 𝑏𝑍 <s 𝑏))
2726ralbidv 3202 . . . . 5 (𝑧 = 𝑍 → (∀𝑏𝐵 𝑧 <s 𝑏 ↔ ∀𝑏𝐵 𝑍 <s 𝑏))
28 fveq2 6667 . . . . . 6 (𝑧 = 𝑍 → ( bday 𝑧) = ( bday 𝑍))
2928sseq1d 4002 . . . . 5 (𝑧 = 𝑍 → (( bday 𝑧) ⊆ suc ( bday “ (𝐴𝐵)) ↔ ( bday 𝑍) ⊆ suc ( bday “ (𝐴𝐵))))
3025, 27, 293anbi123d 1429 . . . 4 (𝑧 = 𝑍 → ((∀𝑎𝐴 𝑎 <s 𝑧 ∧ ∀𝑏𝐵 𝑧 <s 𝑏 ∧ ( bday 𝑧) ⊆ suc ( bday “ (𝐴𝐵))) ↔ (∀𝑎𝐴 𝑎 <s 𝑍 ∧ ∀𝑏𝐵 𝑍 <s 𝑏 ∧ ( bday 𝑍) ⊆ suc ( bday “ (𝐴𝐵)))))
3130rspcev 3627 . . 3 ((𝑍 No ∧ (∀𝑎𝐴 𝑎 <s 𝑍 ∧ ∀𝑏𝐵 𝑍 <s 𝑏 ∧ ( bday 𝑍) ⊆ suc ( bday “ (𝐴𝐵)))) → ∃𝑧 No (∀𝑎𝐴 𝑎 <s 𝑧 ∧ ∀𝑏𝐵 𝑧 <s 𝑏 ∧ ( bday 𝑧) ⊆ suc ( bday “ (𝐴𝐵))))
3212, 20, 21, 23, 31syl13anc 1366 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∃𝑧 No (∀𝑎𝐴 𝑎 <s 𝑧 ∧ ∀𝑏𝐵 𝑧 <s 𝑏 ∧ ( bday 𝑧) ⊆ suc ( bday “ (𝐴𝐵))))
332, 4, 5, 32syl3an 1154 1 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∃𝑧 No (∀𝑎𝐴 𝑎 <s 𝑧 ∧ ∀𝑏𝐵 𝑧 <s 𝑏 ∧ ( bday 𝑧) ⊆ suc ( bday “ (𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  {cab 2804  wral 3143  wrex 3144  Vcvv 3500  cdif 3937  cun 3938  wss 3940  ifcif 4470  {csn 4564  cop 4570   cuni 4837   class class class wbr 5063  cmpt 5143   × cxp 5552  dom cdm 5554  cres 5556  cima 5557  suc csuc 6191  cio 6310  cfv 6352  crio 7105  1oc1o 8086  2oc2o 8087   No csur 33031   <s cslt 33032   bday cbday 33033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6192  df-on 6193  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-1o 8093  df-2o 8094  df-no 33034  df-slt 33035  df-bday 33036
This theorem is referenced by:  noeta  33106
  Copyright terms: Public domain W3C validator