Step | Hyp | Ref
| Expression |
1 | | elmapfn 8684 |
. . . 4
⊢ (𝐹 ∈ (ω
↑m 𝐴)
→ 𝐹 Fn 𝐴) |
2 | 1 | ad2antrl 726 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐹 Fn 𝐴) |
3 | | elmapfn 8684 |
. . . 4
⊢ (𝐺 ∈ (ω
↑m 𝐴)
→ 𝐺 Fn 𝐴) |
4 | 3 | ad2antll 727 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐺 Fn 𝐴) |
5 | | simpl 484 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐴 ∈ 𝑉) |
6 | | inidm 4158 |
. . 3
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
7 | 2, 4, 5, 5, 6 | offn 7578 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) Fn 𝐴) |
8 | 4, 2, 5, 5, 6 | offn 7578 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐺 ∘f +o 𝐹) Fn 𝐴) |
9 | | elmapi 8668 |
. . . . . 6
⊢ (𝐹 ∈ (ω
↑m 𝐴)
→ 𝐹:𝐴⟶ω) |
10 | 9 | ad2antrl 726 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐹:𝐴⟶ω) |
11 | 10 | ffvelcdmda 6993 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) ∈ ω) |
12 | | elmapi 8668 |
. . . . . 6
⊢ (𝐺 ∈ (ω
↑m 𝐴)
→ 𝐺:𝐴⟶ω) |
13 | 12 | ad2antll 727 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐺:𝐴⟶ω) |
14 | 13 | ffvelcdmda 6993 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (𝐺‘𝑎) ∈ ω) |
15 | | nnacom 8479 |
. . . 4
⊢ (((𝐹‘𝑎) ∈ ω ∧ (𝐺‘𝑎) ∈ ω) → ((𝐹‘𝑎) +o (𝐺‘𝑎)) = ((𝐺‘𝑎) +o (𝐹‘𝑎))) |
16 | 11, 14, 15 | syl2anc 585 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((𝐹‘𝑎) +o (𝐺‘𝑎)) = ((𝐺‘𝑎) +o (𝐹‘𝑎))) |
17 | 2, 4 | jca 513 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴)) |
18 | 5 | anim1i 616 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴)) |
19 | | fnfvof 7582 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴)) → ((𝐹 ∘f +o 𝐺)‘𝑎) = ((𝐹‘𝑎) +o (𝐺‘𝑎))) |
20 | 17, 18, 19 | syl2an2r 683 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((𝐹 ∘f +o 𝐺)‘𝑎) = ((𝐹‘𝑎) +o (𝐺‘𝑎))) |
21 | 4, 2 | jca 513 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐺 Fn 𝐴 ∧ 𝐹 Fn 𝐴)) |
22 | | fnfvof 7582 |
. . . 4
⊢ (((𝐺 Fn 𝐴 ∧ 𝐹 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴)) → ((𝐺 ∘f +o 𝐹)‘𝑎) = ((𝐺‘𝑎) +o (𝐹‘𝑎))) |
23 | 21, 18, 22 | syl2an2r 683 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((𝐺 ∘f +o 𝐹)‘𝑎) = ((𝐺‘𝑎) +o (𝐹‘𝑎))) |
24 | 16, 20, 23 | 3eqtr4d 2786 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((𝐹 ∘f +o 𝐺)‘𝑎) = ((𝐺 ∘f +o 𝐹)‘𝑎)) |
25 | 7, 8, 24 | eqfnfvd 6944 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) = (𝐺 ∘f +o 𝐹)) |