| Step | Hyp | Ref
| Expression |
| 1 | | elmapfn 8887 |
. . . 4
⊢ (𝐹 ∈ (ω
↑m 𝐴)
→ 𝐹 Fn 𝐴) |
| 2 | 1 | ad2antrl 728 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐹 Fn 𝐴) |
| 3 | | elmapfn 8887 |
. . . 4
⊢ (𝐺 ∈ (ω
↑m 𝐴)
→ 𝐺 Fn 𝐴) |
| 4 | 3 | ad2antll 729 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐺 Fn 𝐴) |
| 5 | | simpl 482 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐴 ∈ 𝑉) |
| 6 | | inidm 4207 |
. . 3
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 7 | 2, 4, 5, 5, 6 | offn 7692 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) Fn 𝐴) |
| 8 | 4, 2, 5, 5, 6 | offn 7692 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐺 ∘f +o 𝐹) Fn 𝐴) |
| 9 | | elmapi 8871 |
. . . . . 6
⊢ (𝐹 ∈ (ω
↑m 𝐴)
→ 𝐹:𝐴⟶ω) |
| 10 | 9 | ad2antrl 728 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐹:𝐴⟶ω) |
| 11 | 10 | ffvelcdmda 7084 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) ∈ ω) |
| 12 | | elmapi 8871 |
. . . . . 6
⊢ (𝐺 ∈ (ω
↑m 𝐴)
→ 𝐺:𝐴⟶ω) |
| 13 | 12 | ad2antll 729 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐺:𝐴⟶ω) |
| 14 | 13 | ffvelcdmda 7084 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (𝐺‘𝑎) ∈ ω) |
| 15 | | nnacom 8637 |
. . . 4
⊢ (((𝐹‘𝑎) ∈ ω ∧ (𝐺‘𝑎) ∈ ω) → ((𝐹‘𝑎) +o (𝐺‘𝑎)) = ((𝐺‘𝑎) +o (𝐹‘𝑎))) |
| 16 | 11, 14, 15 | syl2anc 584 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((𝐹‘𝑎) +o (𝐺‘𝑎)) = ((𝐺‘𝑎) +o (𝐹‘𝑎))) |
| 17 | 2, 4 | jca 511 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴)) |
| 18 | 5 | anim1i 615 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴)) |
| 19 | | fnfvof 7696 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴)) → ((𝐹 ∘f +o 𝐺)‘𝑎) = ((𝐹‘𝑎) +o (𝐺‘𝑎))) |
| 20 | 17, 18, 19 | syl2an2r 685 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((𝐹 ∘f +o 𝐺)‘𝑎) = ((𝐹‘𝑎) +o (𝐺‘𝑎))) |
| 21 | 4, 2 | jca 511 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐺 Fn 𝐴 ∧ 𝐹 Fn 𝐴)) |
| 22 | | fnfvof 7696 |
. . . 4
⊢ (((𝐺 Fn 𝐴 ∧ 𝐹 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴)) → ((𝐺 ∘f +o 𝐹)‘𝑎) = ((𝐺‘𝑎) +o (𝐹‘𝑎))) |
| 23 | 21, 18, 22 | syl2an2r 685 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((𝐺 ∘f +o 𝐹)‘𝑎) = ((𝐺‘𝑎) +o (𝐹‘𝑎))) |
| 24 | 16, 20, 23 | 3eqtr4d 2779 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((𝐹 ∘f +o 𝐺)‘𝑎) = ((𝐺 ∘f +o 𝐹)‘𝑎)) |
| 25 | 7, 8, 24 | eqfnfvd 7034 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) = (𝐺 ∘f +o 𝐹)) |