Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoacom Structured version   Visualization version   GIF version

Theorem ofoacom 43373
Description: Component-wise addition of natural numnber-yielding functions commutes. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoacom ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹f +o 𝐺) = (𝐺f +o 𝐹))

Proof of Theorem ofoacom
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elmapfn 8784 . . . 4 (𝐹 ∈ (ω ↑m 𝐴) → 𝐹 Fn 𝐴)
21ad2antrl 728 . . 3 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐹 Fn 𝐴)
3 elmapfn 8784 . . . 4 (𝐺 ∈ (ω ↑m 𝐴) → 𝐺 Fn 𝐴)
43ad2antll 729 . . 3 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐺 Fn 𝐴)
5 simpl 482 . . 3 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐴𝑉)
6 inidm 4175 . . 3 (𝐴𝐴) = 𝐴
72, 4, 5, 5, 6offn 7618 . 2 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹f +o 𝐺) Fn 𝐴)
84, 2, 5, 5, 6offn 7618 . 2 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐺f +o 𝐹) Fn 𝐴)
9 elmapi 8768 . . . . . 6 (𝐹 ∈ (ω ↑m 𝐴) → 𝐹:𝐴⟶ω)
109ad2antrl 728 . . . . 5 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐹:𝐴⟶ω)
1110ffvelcdmda 7012 . . . 4 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ ω)
12 elmapi 8768 . . . . . 6 (𝐺 ∈ (ω ↑m 𝐴) → 𝐺:𝐴⟶ω)
1312ad2antll 729 . . . . 5 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐺:𝐴⟶ω)
1413ffvelcdmda 7012 . . . 4 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ ω)
15 nnacom 8527 . . . 4 (((𝐹𝑎) ∈ ω ∧ (𝐺𝑎) ∈ ω) → ((𝐹𝑎) +o (𝐺𝑎)) = ((𝐺𝑎) +o (𝐹𝑎)))
1611, 14, 15syl2anc 584 . . 3 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐹𝑎) +o (𝐺𝑎)) = ((𝐺𝑎) +o (𝐹𝑎)))
172, 4jca 511 . . . 4 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
185anim1i 615 . . . 4 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → (𝐴𝑉𝑎𝐴))
19 fnfvof 7622 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
2017, 18, 19syl2an2r 685 . . 3 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
214, 2jca 511 . . . 4 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐺 Fn 𝐴𝐹 Fn 𝐴))
22 fnfvof 7622 . . . 4 (((𝐺 Fn 𝐴𝐹 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐺f +o 𝐹)‘𝑎) = ((𝐺𝑎) +o (𝐹𝑎)))
2321, 18, 22syl2an2r 685 . . 3 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐺f +o 𝐹)‘𝑎) = ((𝐺𝑎) +o (𝐹𝑎)))
2416, 20, 233eqtr4d 2775 . 2 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐺f +o 𝐹)‘𝑎))
257, 8, 24eqfnfvd 6962 1 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹f +o 𝐺) = (𝐺f +o 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  f cof 7603  ωcom 7791   +o coa 8377  m cmap 8745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-oadd 8384  df-map 8747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator