Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoacom Structured version   Visualization version   GIF version

Theorem ofoacom 43343
Description: Component-wise addition of natural numnber-yielding functions commutes. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoacom ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹f +o 𝐺) = (𝐺f +o 𝐹))

Proof of Theorem ofoacom
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elmapfn 8840 . . . 4 (𝐹 ∈ (ω ↑m 𝐴) → 𝐹 Fn 𝐴)
21ad2antrl 728 . . 3 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐹 Fn 𝐴)
3 elmapfn 8840 . . . 4 (𝐺 ∈ (ω ↑m 𝐴) → 𝐺 Fn 𝐴)
43ad2antll 729 . . 3 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐺 Fn 𝐴)
5 simpl 482 . . 3 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐴𝑉)
6 inidm 4192 . . 3 (𝐴𝐴) = 𝐴
72, 4, 5, 5, 6offn 7668 . 2 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹f +o 𝐺) Fn 𝐴)
84, 2, 5, 5, 6offn 7668 . 2 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐺f +o 𝐹) Fn 𝐴)
9 elmapi 8824 . . . . . 6 (𝐹 ∈ (ω ↑m 𝐴) → 𝐹:𝐴⟶ω)
109ad2antrl 728 . . . . 5 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐹:𝐴⟶ω)
1110ffvelcdmda 7058 . . . 4 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ ω)
12 elmapi 8824 . . . . . 6 (𝐺 ∈ (ω ↑m 𝐴) → 𝐺:𝐴⟶ω)
1312ad2antll 729 . . . . 5 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐺:𝐴⟶ω)
1413ffvelcdmda 7058 . . . 4 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ ω)
15 nnacom 8583 . . . 4 (((𝐹𝑎) ∈ ω ∧ (𝐺𝑎) ∈ ω) → ((𝐹𝑎) +o (𝐺𝑎)) = ((𝐺𝑎) +o (𝐹𝑎)))
1611, 14, 15syl2anc 584 . . 3 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐹𝑎) +o (𝐺𝑎)) = ((𝐺𝑎) +o (𝐹𝑎)))
172, 4jca 511 . . . 4 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
185anim1i 615 . . . 4 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → (𝐴𝑉𝑎𝐴))
19 fnfvof 7672 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
2017, 18, 19syl2an2r 685 . . 3 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
214, 2jca 511 . . . 4 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐺 Fn 𝐴𝐹 Fn 𝐴))
22 fnfvof 7672 . . . 4 (((𝐺 Fn 𝐴𝐹 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐺f +o 𝐹)‘𝑎) = ((𝐺𝑎) +o (𝐹𝑎)))
2321, 18, 22syl2an2r 685 . . 3 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐺f +o 𝐹)‘𝑎) = ((𝐺𝑎) +o (𝐹𝑎)))
2416, 20, 233eqtr4d 2775 . 2 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐺f +o 𝐹)‘𝑎))
257, 8, 24eqfnfvd 7008 1 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹f +o 𝐺) = (𝐺f +o 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389  f cof 7653  ωcom 7844   +o coa 8433  m cmap 8801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-oadd 8440  df-map 8803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator