Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoacom Structured version   Visualization version   GIF version

Theorem ofoacom 43325
Description: Component-wise addition of natural numnber-yielding functions commutes. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoacom ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹f +o 𝐺) = (𝐺f +o 𝐹))

Proof of Theorem ofoacom
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elmapfn 8925 . . . 4 (𝐹 ∈ (ω ↑m 𝐴) → 𝐹 Fn 𝐴)
21ad2antrl 727 . . 3 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐹 Fn 𝐴)
3 elmapfn 8925 . . . 4 (𝐺 ∈ (ω ↑m 𝐴) → 𝐺 Fn 𝐴)
43ad2antll 728 . . 3 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐺 Fn 𝐴)
5 simpl 482 . . 3 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐴𝑉)
6 inidm 4248 . . 3 (𝐴𝐴) = 𝐴
72, 4, 5, 5, 6offn 7729 . 2 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹f +o 𝐺) Fn 𝐴)
84, 2, 5, 5, 6offn 7729 . 2 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐺f +o 𝐹) Fn 𝐴)
9 elmapi 8909 . . . . . 6 (𝐹 ∈ (ω ↑m 𝐴) → 𝐹:𝐴⟶ω)
109ad2antrl 727 . . . . 5 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐹:𝐴⟶ω)
1110ffvelcdmda 7120 . . . 4 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ ω)
12 elmapi 8909 . . . . . 6 (𝐺 ∈ (ω ↑m 𝐴) → 𝐺:𝐴⟶ω)
1312ad2antll 728 . . . . 5 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐺:𝐴⟶ω)
1413ffvelcdmda 7120 . . . 4 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ ω)
15 nnacom 8675 . . . 4 (((𝐹𝑎) ∈ ω ∧ (𝐺𝑎) ∈ ω) → ((𝐹𝑎) +o (𝐺𝑎)) = ((𝐺𝑎) +o (𝐹𝑎)))
1611, 14, 15syl2anc 583 . . 3 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐹𝑎) +o (𝐺𝑎)) = ((𝐺𝑎) +o (𝐹𝑎)))
172, 4jca 511 . . . 4 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
185anim1i 614 . . . 4 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → (𝐴𝑉𝑎𝐴))
19 fnfvof 7733 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
2017, 18, 19syl2an2r 684 . . 3 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
214, 2jca 511 . . . 4 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐺 Fn 𝐴𝐹 Fn 𝐴))
22 fnfvof 7733 . . . 4 (((𝐺 Fn 𝐴𝐹 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐺f +o 𝐹)‘𝑎) = ((𝐺𝑎) +o (𝐹𝑎)))
2321, 18, 22syl2an2r 684 . . 3 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐺f +o 𝐹)‘𝑎) = ((𝐺𝑎) +o (𝐹𝑎)))
2416, 20, 233eqtr4d 2790 . 2 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐺f +o 𝐹)‘𝑎))
257, 8, 24eqfnfvd 7069 1 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹f +o 𝐺) = (𝐺f +o 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   Fn wfn 6570  wf 6571  cfv 6575  (class class class)co 7450  f cof 7714  ωcom 7905   +o coa 8521  m cmap 8886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-of 7716  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-oadd 8528  df-map 8888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator