Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoacom Structured version   Visualization version   GIF version

Theorem ofoacom 41252
Description: Component-wise addition of natural numnber-yielding functions commutes. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoacom ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹f +o 𝐺) = (𝐺f +o 𝐹))

Proof of Theorem ofoacom
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elmapfn 8684 . . . 4 (𝐹 ∈ (ω ↑m 𝐴) → 𝐹 Fn 𝐴)
21ad2antrl 726 . . 3 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐹 Fn 𝐴)
3 elmapfn 8684 . . . 4 (𝐺 ∈ (ω ↑m 𝐴) → 𝐺 Fn 𝐴)
43ad2antll 727 . . 3 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐺 Fn 𝐴)
5 simpl 484 . . 3 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐴𝑉)
6 inidm 4158 . . 3 (𝐴𝐴) = 𝐴
72, 4, 5, 5, 6offn 7578 . 2 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹f +o 𝐺) Fn 𝐴)
84, 2, 5, 5, 6offn 7578 . 2 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐺f +o 𝐹) Fn 𝐴)
9 elmapi 8668 . . . . . 6 (𝐹 ∈ (ω ↑m 𝐴) → 𝐹:𝐴⟶ω)
109ad2antrl 726 . . . . 5 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐹:𝐴⟶ω)
1110ffvelcdmda 6993 . . . 4 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ ω)
12 elmapi 8668 . . . . . 6 (𝐺 ∈ (ω ↑m 𝐴) → 𝐺:𝐴⟶ω)
1312ad2antll 727 . . . . 5 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → 𝐺:𝐴⟶ω)
1413ffvelcdmda 6993 . . . 4 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ ω)
15 nnacom 8479 . . . 4 (((𝐹𝑎) ∈ ω ∧ (𝐺𝑎) ∈ ω) → ((𝐹𝑎) +o (𝐺𝑎)) = ((𝐺𝑎) +o (𝐹𝑎)))
1611, 14, 15syl2anc 585 . . 3 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐹𝑎) +o (𝐺𝑎)) = ((𝐺𝑎) +o (𝐹𝑎)))
172, 4jca 513 . . . 4 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
185anim1i 616 . . . 4 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → (𝐴𝑉𝑎𝐴))
19 fnfvof 7582 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
2017, 18, 19syl2an2r 683 . . 3 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
214, 2jca 513 . . . 4 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐺 Fn 𝐴𝐹 Fn 𝐴))
22 fnfvof 7582 . . . 4 (((𝐺 Fn 𝐴𝐹 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐺f +o 𝐹)‘𝑎) = ((𝐺𝑎) +o (𝐹𝑎)))
2321, 18, 22syl2an2r 683 . . 3 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐺f +o 𝐹)‘𝑎) = ((𝐺𝑎) +o (𝐹𝑎)))
2416, 20, 233eqtr4d 2786 . 2 (((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐺f +o 𝐹)‘𝑎))
257, 8, 24eqfnfvd 6944 1 ((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹f +o 𝐺) = (𝐺f +o 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104   Fn wfn 6453  wf 6454  cfv 6458  (class class class)co 7307  f cof 7563  ωcom 7744   +o coa 8325  m cmap 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3332  df-rab 3333  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-oadd 8332  df-map 8648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator