Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoaass Structured version   Visualization version   GIF version

Theorem ofoaass 42100
Description: Component-wise addition of ordinal-yielding functions is associative. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoaass (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))

Proof of Theorem ofoaass
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elmapfn 8858 . . . . . 6 (𝐹 ∈ (𝐵m 𝐴) → 𝐹 Fn 𝐴)
213ad2ant1 1133 . . . . 5 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐹 Fn 𝐴)
32adantl 482 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐹 Fn 𝐴)
4 elmapfn 8858 . . . . . 6 (𝐺 ∈ (𝐵m 𝐴) → 𝐺 Fn 𝐴)
543ad2ant2 1134 . . . . 5 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐺 Fn 𝐴)
65adantl 482 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐺 Fn 𝐴)
7 simpll 765 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐴𝑉)
8 inidm 4218 . . . 4 (𝐴𝐴) = 𝐴
93, 6, 7, 7, 8offn 7682 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹f +o 𝐺) Fn 𝐴)
10 elmapfn 8858 . . . . 5 (𝐻 ∈ (𝐵m 𝐴) → 𝐻 Fn 𝐴)
11103ad2ant3 1135 . . . 4 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐻 Fn 𝐴)
1211adantl 482 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐻 Fn 𝐴)
139, 12, 7, 7, 8offn 7682 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) Fn 𝐴)
146, 12, 7, 7, 8offn 7682 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐺f +o 𝐻) Fn 𝐴)
153, 14, 7, 7, 8offn 7682 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹f +o (𝐺f +o 𝐻)) Fn 𝐴)
16 simpllr 774 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐵 ∈ On)
17 elmapi 8842 . . . . . . . . 9 (𝐹 ∈ (𝐵m 𝐴) → 𝐹:𝐴𝐵)
18173ad2ant1 1133 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐹:𝐴𝐵)
1918adantl 482 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐹:𝐴𝐵)
2019ffvelcdmda 7086 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ 𝐵)
21 onelon 6389 . . . . . 6 ((𝐵 ∈ On ∧ (𝐹𝑎) ∈ 𝐵) → (𝐹𝑎) ∈ On)
2216, 20, 21syl2anc 584 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ On)
23 elmapi 8842 . . . . . . . . 9 (𝐺 ∈ (𝐵m 𝐴) → 𝐺:𝐴𝐵)
24233ad2ant2 1134 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐺:𝐴𝐵)
2524adantl 482 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐺:𝐴𝐵)
2625ffvelcdmda 7086 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ 𝐵)
27 onelon 6389 . . . . . 6 ((𝐵 ∈ On ∧ (𝐺𝑎) ∈ 𝐵) → (𝐺𝑎) ∈ On)
2816, 26, 27syl2anc 584 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ On)
29 elmapi 8842 . . . . . . . . 9 (𝐻 ∈ (𝐵m 𝐴) → 𝐻:𝐴𝐵)
30293ad2ant3 1135 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐻:𝐴𝐵)
3130adantl 482 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐻:𝐴𝐵)
3231ffvelcdmda 7086 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐻𝑎) ∈ 𝐵)
33 onelon 6389 . . . . . 6 ((𝐵 ∈ On ∧ (𝐻𝑎) ∈ 𝐵) → (𝐻𝑎) ∈ On)
3416, 32, 33syl2anc 584 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐻𝑎) ∈ On)
35 oaass 8560 . . . . 5 (((𝐹𝑎) ∈ On ∧ (𝐺𝑎) ∈ On ∧ (𝐻𝑎) ∈ On) → (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
3622, 28, 34, 35syl3anc 1371 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
373adantr 481 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐹 Fn 𝐴)
386adantr 481 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐺 Fn 𝐴)
397anim1i 615 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐴𝑉𝑎𝐴))
40 fnfvof 7686 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
4137, 38, 39, 40syl21anc 836 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
4241oveq1d 7423 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)) = (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)))
436, 12jca 512 . . . . . 6 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐺 Fn 𝐴𝐻 Fn 𝐴))
44 fnfvof 7686 . . . . . 6 (((𝐺 Fn 𝐴𝐻 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐺f +o 𝐻)‘𝑎) = ((𝐺𝑎) +o (𝐻𝑎)))
4543, 39, 44syl2an2r 683 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐺f +o 𝐻)‘𝑎) = ((𝐺𝑎) +o (𝐻𝑎)))
4645oveq2d 7424 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
4736, 42, 463eqtr4d 2782 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
489, 12jca 512 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) Fn 𝐴𝐻 Fn 𝐴))
49 fnfvof 7686 . . . 4 ((((𝐹f +o 𝐺) Fn 𝐴𝐻 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)))
5048, 39, 49syl2an2r 683 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)))
513, 14jca 512 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹 Fn 𝐴 ∧ (𝐺f +o 𝐻) Fn 𝐴))
52 fnfvof 7686 . . . 4 (((𝐹 Fn 𝐴 ∧ (𝐺f +o 𝐻) Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑎) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
5351, 39, 52syl2an2r 683 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑎) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
5447, 50, 533eqtr4d 2782 . 2 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = ((𝐹f +o (𝐺f +o 𝐻))‘𝑎))
5513, 15, 54eqfnfvd 7035 1 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Oncon0 6364   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7408  f cof 7667   +o coa 8462  m cmap 8819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-oadd 8469  df-map 8821
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator