Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoaass Structured version   Visualization version   GIF version

Theorem ofoaass 41251
Description: Component-wise addition of ordinal-yielding functions is associative. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoaass (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))

Proof of Theorem ofoaass
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elmapfn 8684 . . . . . 6 (𝐹 ∈ (𝐵m 𝐴) → 𝐹 Fn 𝐴)
213ad2ant1 1133 . . . . 5 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐹 Fn 𝐴)
32adantl 483 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐹 Fn 𝐴)
4 elmapfn 8684 . . . . . 6 (𝐺 ∈ (𝐵m 𝐴) → 𝐺 Fn 𝐴)
543ad2ant2 1134 . . . . 5 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐺 Fn 𝐴)
65adantl 483 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐺 Fn 𝐴)
7 simpll 765 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐴𝑉)
8 inidm 4158 . . . 4 (𝐴𝐴) = 𝐴
93, 6, 7, 7, 8offn 7578 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹f +o 𝐺) Fn 𝐴)
10 elmapfn 8684 . . . . 5 (𝐻 ∈ (𝐵m 𝐴) → 𝐻 Fn 𝐴)
11103ad2ant3 1135 . . . 4 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐻 Fn 𝐴)
1211adantl 483 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐻 Fn 𝐴)
139, 12, 7, 7, 8offn 7578 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) Fn 𝐴)
146, 12, 7, 7, 8offn 7578 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐺f +o 𝐻) Fn 𝐴)
153, 14, 7, 7, 8offn 7578 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹f +o (𝐺f +o 𝐻)) Fn 𝐴)
16 simpllr 774 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐵 ∈ On)
17 elmapi 8668 . . . . . . . . 9 (𝐹 ∈ (𝐵m 𝐴) → 𝐹:𝐴𝐵)
18173ad2ant1 1133 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐹:𝐴𝐵)
1918adantl 483 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐹:𝐴𝐵)
2019ffvelcdmda 6993 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ 𝐵)
21 onelon 6306 . . . . . 6 ((𝐵 ∈ On ∧ (𝐹𝑎) ∈ 𝐵) → (𝐹𝑎) ∈ On)
2216, 20, 21syl2anc 585 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ On)
23 elmapi 8668 . . . . . . . . 9 (𝐺 ∈ (𝐵m 𝐴) → 𝐺:𝐴𝐵)
24233ad2ant2 1134 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐺:𝐴𝐵)
2524adantl 483 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐺:𝐴𝐵)
2625ffvelcdmda 6993 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ 𝐵)
27 onelon 6306 . . . . . 6 ((𝐵 ∈ On ∧ (𝐺𝑎) ∈ 𝐵) → (𝐺𝑎) ∈ On)
2816, 26, 27syl2anc 585 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ On)
29 elmapi 8668 . . . . . . . . 9 (𝐻 ∈ (𝐵m 𝐴) → 𝐻:𝐴𝐵)
30293ad2ant3 1135 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐻:𝐴𝐵)
3130adantl 483 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐻:𝐴𝐵)
3231ffvelcdmda 6993 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐻𝑎) ∈ 𝐵)
33 onelon 6306 . . . . . 6 ((𝐵 ∈ On ∧ (𝐻𝑎) ∈ 𝐵) → (𝐻𝑎) ∈ On)
3416, 32, 33syl2anc 585 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐻𝑎) ∈ On)
35 oaass 8423 . . . . 5 (((𝐹𝑎) ∈ On ∧ (𝐺𝑎) ∈ On ∧ (𝐻𝑎) ∈ On) → (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
3622, 28, 34, 35syl3anc 1371 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
373adantr 482 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐹 Fn 𝐴)
386adantr 482 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐺 Fn 𝐴)
397anim1i 616 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐴𝑉𝑎𝐴))
40 fnfvof 7582 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
4137, 38, 39, 40syl21anc 836 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
4241oveq1d 7322 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)) = (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)))
436, 12jca 513 . . . . . 6 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐺 Fn 𝐴𝐻 Fn 𝐴))
44 fnfvof 7582 . . . . . 6 (((𝐺 Fn 𝐴𝐻 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐺f +o 𝐻)‘𝑎) = ((𝐺𝑎) +o (𝐻𝑎)))
4543, 39, 44syl2an2r 683 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐺f +o 𝐻)‘𝑎) = ((𝐺𝑎) +o (𝐻𝑎)))
4645oveq2d 7323 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
4736, 42, 463eqtr4d 2786 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
489, 12jca 513 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) Fn 𝐴𝐻 Fn 𝐴))
49 fnfvof 7582 . . . 4 ((((𝐹f +o 𝐺) Fn 𝐴𝐻 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)))
5048, 39, 49syl2an2r 683 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)))
513, 14jca 513 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹 Fn 𝐴 ∧ (𝐺f +o 𝐻) Fn 𝐴))
52 fnfvof 7582 . . . 4 (((𝐹 Fn 𝐴 ∧ (𝐺f +o 𝐻) Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑎) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
5351, 39, 52syl2an2r 683 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑎) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
5447, 50, 533eqtr4d 2786 . 2 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = ((𝐹f +o (𝐺f +o 𝐻))‘𝑎))
5513, 15, 54eqfnfvd 6944 1 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  Oncon0 6281   Fn wfn 6453  wf 6454  cfv 6458  (class class class)co 7307  f cof 7563   +o coa 8325  m cmap 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3331  df-reu 3332  df-rab 3333  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-oadd 8332  df-map 8648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator