Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoaass Structured version   Visualization version   GIF version

Theorem ofoaass 41277
Description: Component-wise addition of ordinal-yielding functions is associative. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoaass (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))

Proof of Theorem ofoaass
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elmapfn 8702 . . . . . 6 (𝐹 ∈ (𝐵m 𝐴) → 𝐹 Fn 𝐴)
213ad2ant1 1132 . . . . 5 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐹 Fn 𝐴)
32adantl 482 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐹 Fn 𝐴)
4 elmapfn 8702 . . . . . 6 (𝐺 ∈ (𝐵m 𝐴) → 𝐺 Fn 𝐴)
543ad2ant2 1133 . . . . 5 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐺 Fn 𝐴)
65adantl 482 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐺 Fn 𝐴)
7 simpll 764 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐴𝑉)
8 inidm 4162 . . . 4 (𝐴𝐴) = 𝐴
93, 6, 7, 7, 8offn 7587 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹f +o 𝐺) Fn 𝐴)
10 elmapfn 8702 . . . . 5 (𝐻 ∈ (𝐵m 𝐴) → 𝐻 Fn 𝐴)
11103ad2ant3 1134 . . . 4 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐻 Fn 𝐴)
1211adantl 482 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐻 Fn 𝐴)
139, 12, 7, 7, 8offn 7587 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) Fn 𝐴)
146, 12, 7, 7, 8offn 7587 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐺f +o 𝐻) Fn 𝐴)
153, 14, 7, 7, 8offn 7587 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹f +o (𝐺f +o 𝐻)) Fn 𝐴)
16 simpllr 773 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐵 ∈ On)
17 elmapi 8686 . . . . . . . . 9 (𝐹 ∈ (𝐵m 𝐴) → 𝐹:𝐴𝐵)
18173ad2ant1 1132 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐹:𝐴𝐵)
1918adantl 482 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐹:𝐴𝐵)
2019ffvelcdmda 7000 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ 𝐵)
21 onelon 6313 . . . . . 6 ((𝐵 ∈ On ∧ (𝐹𝑎) ∈ 𝐵) → (𝐹𝑎) ∈ On)
2216, 20, 21syl2anc 584 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ On)
23 elmapi 8686 . . . . . . . . 9 (𝐺 ∈ (𝐵m 𝐴) → 𝐺:𝐴𝐵)
24233ad2ant2 1133 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐺:𝐴𝐵)
2524adantl 482 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐺:𝐴𝐵)
2625ffvelcdmda 7000 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ 𝐵)
27 onelon 6313 . . . . . 6 ((𝐵 ∈ On ∧ (𝐺𝑎) ∈ 𝐵) → (𝐺𝑎) ∈ On)
2816, 26, 27syl2anc 584 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ On)
29 elmapi 8686 . . . . . . . . 9 (𝐻 ∈ (𝐵m 𝐴) → 𝐻:𝐴𝐵)
30293ad2ant3 1134 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐻:𝐴𝐵)
3130adantl 482 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐻:𝐴𝐵)
3231ffvelcdmda 7000 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐻𝑎) ∈ 𝐵)
33 onelon 6313 . . . . . 6 ((𝐵 ∈ On ∧ (𝐻𝑎) ∈ 𝐵) → (𝐻𝑎) ∈ On)
3416, 32, 33syl2anc 584 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐻𝑎) ∈ On)
35 oaass 8441 . . . . 5 (((𝐹𝑎) ∈ On ∧ (𝐺𝑎) ∈ On ∧ (𝐻𝑎) ∈ On) → (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
3622, 28, 34, 35syl3anc 1370 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
373adantr 481 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐹 Fn 𝐴)
386adantr 481 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐺 Fn 𝐴)
397anim1i 615 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐴𝑉𝑎𝐴))
40 fnfvof 7591 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
4137, 38, 39, 40syl21anc 835 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
4241oveq1d 7331 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)) = (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)))
436, 12jca 512 . . . . . 6 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐺 Fn 𝐴𝐻 Fn 𝐴))
44 fnfvof 7591 . . . . . 6 (((𝐺 Fn 𝐴𝐻 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐺f +o 𝐻)‘𝑎) = ((𝐺𝑎) +o (𝐻𝑎)))
4543, 39, 44syl2an2r 682 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐺f +o 𝐻)‘𝑎) = ((𝐺𝑎) +o (𝐻𝑎)))
4645oveq2d 7332 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
4736, 42, 463eqtr4d 2786 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
489, 12jca 512 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) Fn 𝐴𝐻 Fn 𝐴))
49 fnfvof 7591 . . . 4 ((((𝐹f +o 𝐺) Fn 𝐴𝐻 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)))
5048, 39, 49syl2an2r 682 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)))
513, 14jca 512 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹 Fn 𝐴 ∧ (𝐺f +o 𝐻) Fn 𝐴))
52 fnfvof 7591 . . . 4 (((𝐹 Fn 𝐴 ∧ (𝐺f +o 𝐻) Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑎) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
5351, 39, 52syl2an2r 682 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑎) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
5447, 50, 533eqtr4d 2786 . 2 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = ((𝐹f +o (𝐺f +o 𝐻))‘𝑎))
5513, 15, 54eqfnfvd 6951 1 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  Oncon0 6288   Fn wfn 6460  wf 6461  cfv 6465  (class class class)co 7316  f cof 7572   +o coa 8342  m cmap 8664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7319  df-oprab 7320  df-mpo 7321  df-of 7574  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-oadd 8349  df-map 8666
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator