Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoaass Structured version   Visualization version   GIF version

Theorem ofoaass 43452
Description: Component-wise addition of ordinal-yielding functions is associative. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoaass (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))

Proof of Theorem ofoaass
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elmapfn 8789 . . . . . 6 (𝐹 ∈ (𝐵m 𝐴) → 𝐹 Fn 𝐴)
213ad2ant1 1133 . . . . 5 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐹 Fn 𝐴)
32adantl 481 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐹 Fn 𝐴)
4 elmapfn 8789 . . . . . 6 (𝐺 ∈ (𝐵m 𝐴) → 𝐺 Fn 𝐴)
543ad2ant2 1134 . . . . 5 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐺 Fn 𝐴)
65adantl 481 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐺 Fn 𝐴)
7 simpll 766 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐴𝑉)
8 inidm 4174 . . . 4 (𝐴𝐴) = 𝐴
93, 6, 7, 7, 8offn 7623 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹f +o 𝐺) Fn 𝐴)
10 elmapfn 8789 . . . . 5 (𝐻 ∈ (𝐵m 𝐴) → 𝐻 Fn 𝐴)
11103ad2ant3 1135 . . . 4 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐻 Fn 𝐴)
1211adantl 481 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐻 Fn 𝐴)
139, 12, 7, 7, 8offn 7623 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) Fn 𝐴)
146, 12, 7, 7, 8offn 7623 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐺f +o 𝐻) Fn 𝐴)
153, 14, 7, 7, 8offn 7623 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹f +o (𝐺f +o 𝐻)) Fn 𝐴)
16 simpllr 775 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐵 ∈ On)
17 elmapi 8773 . . . . . . . . 9 (𝐹 ∈ (𝐵m 𝐴) → 𝐹:𝐴𝐵)
18173ad2ant1 1133 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐹:𝐴𝐵)
1918adantl 481 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐹:𝐴𝐵)
2019ffvelcdmda 7017 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ 𝐵)
21 onelon 6331 . . . . . 6 ((𝐵 ∈ On ∧ (𝐹𝑎) ∈ 𝐵) → (𝐹𝑎) ∈ On)
2216, 20, 21syl2anc 584 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ On)
23 elmapi 8773 . . . . . . . . 9 (𝐺 ∈ (𝐵m 𝐴) → 𝐺:𝐴𝐵)
24233ad2ant2 1134 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐺:𝐴𝐵)
2524adantl 481 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐺:𝐴𝐵)
2625ffvelcdmda 7017 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ 𝐵)
27 onelon 6331 . . . . . 6 ((𝐵 ∈ On ∧ (𝐺𝑎) ∈ 𝐵) → (𝐺𝑎) ∈ On)
2816, 26, 27syl2anc 584 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ On)
29 elmapi 8773 . . . . . . . . 9 (𝐻 ∈ (𝐵m 𝐴) → 𝐻:𝐴𝐵)
30293ad2ant3 1135 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐻:𝐴𝐵)
3130adantl 481 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐻:𝐴𝐵)
3231ffvelcdmda 7017 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐻𝑎) ∈ 𝐵)
33 onelon 6331 . . . . . 6 ((𝐵 ∈ On ∧ (𝐻𝑎) ∈ 𝐵) → (𝐻𝑎) ∈ On)
3416, 32, 33syl2anc 584 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐻𝑎) ∈ On)
35 oaass 8476 . . . . 5 (((𝐹𝑎) ∈ On ∧ (𝐺𝑎) ∈ On ∧ (𝐻𝑎) ∈ On) → (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
3622, 28, 34, 35syl3anc 1373 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
373adantr 480 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐹 Fn 𝐴)
386adantr 480 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐺 Fn 𝐴)
397anim1i 615 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐴𝑉𝑎𝐴))
40 fnfvof 7627 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
4137, 38, 39, 40syl21anc 837 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
4241oveq1d 7361 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)) = (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)))
436, 12jca 511 . . . . . 6 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐺 Fn 𝐴𝐻 Fn 𝐴))
44 fnfvof 7627 . . . . . 6 (((𝐺 Fn 𝐴𝐻 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐺f +o 𝐻)‘𝑎) = ((𝐺𝑎) +o (𝐻𝑎)))
4543, 39, 44syl2an2r 685 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐺f +o 𝐻)‘𝑎) = ((𝐺𝑎) +o (𝐻𝑎)))
4645oveq2d 7362 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
4736, 42, 463eqtr4d 2776 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
489, 12jca 511 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) Fn 𝐴𝐻 Fn 𝐴))
49 fnfvof 7627 . . . 4 ((((𝐹f +o 𝐺) Fn 𝐴𝐻 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)))
5048, 39, 49syl2an2r 685 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)))
513, 14jca 511 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹 Fn 𝐴 ∧ (𝐺f +o 𝐻) Fn 𝐴))
52 fnfvof 7627 . . . 4 (((𝐹 Fn 𝐴 ∧ (𝐺f +o 𝐻) Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑎) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
5351, 39, 52syl2an2r 685 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑎) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
5447, 50, 533eqtr4d 2776 . 2 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = ((𝐹f +o (𝐺f +o 𝐻))‘𝑎))
5513, 15, 54eqfnfvd 6967 1 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Oncon0 6306   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608   +o coa 8382  m cmap 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-oadd 8389  df-map 8752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator