| Step | Hyp | Ref
| Expression |
| 1 | | elmapfn 8887 |
. . . . . 6
⊢ (𝐹 ∈ (𝐵 ↑m 𝐴) → 𝐹 Fn 𝐴) |
| 2 | 1 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴)) → 𝐹 Fn 𝐴) |
| 3 | 2 | adantl 481 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → 𝐹 Fn 𝐴) |
| 4 | | elmapfn 8887 |
. . . . . 6
⊢ (𝐺 ∈ (𝐵 ↑m 𝐴) → 𝐺 Fn 𝐴) |
| 5 | 4 | 3ad2ant2 1134 |
. . . . 5
⊢ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴)) → 𝐺 Fn 𝐴) |
| 6 | 5 | adantl 481 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → 𝐺 Fn 𝐴) |
| 7 | | simpll 766 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → 𝐴 ∈ 𝑉) |
| 8 | | inidm 4207 |
. . . 4
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 9 | 3, 6, 7, 7, 8 | offn 7692 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) Fn 𝐴) |
| 10 | | elmapfn 8887 |
. . . . 5
⊢ (𝐻 ∈ (𝐵 ↑m 𝐴) → 𝐻 Fn 𝐴) |
| 11 | 10 | 3ad2ant3 1135 |
. . . 4
⊢ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴)) → 𝐻 Fn 𝐴) |
| 12 | 11 | adantl 481 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → 𝐻 Fn 𝐴) |
| 13 | 9, 12, 7, 7, 8 | offn 7692 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → ((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻) Fn 𝐴) |
| 14 | 6, 12, 7, 7, 8 | offn 7692 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → (𝐺 ∘f +o 𝐻) Fn 𝐴) |
| 15 | 3, 14, 7, 7, 8 | offn 7692 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → (𝐹 ∘f +o (𝐺 ∘f
+o 𝐻)) Fn 𝐴) |
| 16 | | simpllr 775 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → 𝐵 ∈ On) |
| 17 | | elmapi 8871 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐵 ↑m 𝐴) → 𝐹:𝐴⟶𝐵) |
| 18 | 17 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴)) → 𝐹:𝐴⟶𝐵) |
| 19 | 18 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → 𝐹:𝐴⟶𝐵) |
| 20 | 19 | ffvelcdmda 7084 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) ∈ 𝐵) |
| 21 | | onelon 6388 |
. . . . . 6
⊢ ((𝐵 ∈ On ∧ (𝐹‘𝑎) ∈ 𝐵) → (𝐹‘𝑎) ∈ On) |
| 22 | 16, 20, 21 | syl2anc 584 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) ∈ On) |
| 23 | | elmapi 8871 |
. . . . . . . . 9
⊢ (𝐺 ∈ (𝐵 ↑m 𝐴) → 𝐺:𝐴⟶𝐵) |
| 24 | 23 | 3ad2ant2 1134 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴)) → 𝐺:𝐴⟶𝐵) |
| 25 | 24 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → 𝐺:𝐴⟶𝐵) |
| 26 | 25 | ffvelcdmda 7084 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (𝐺‘𝑎) ∈ 𝐵) |
| 27 | | onelon 6388 |
. . . . . 6
⊢ ((𝐵 ∈ On ∧ (𝐺‘𝑎) ∈ 𝐵) → (𝐺‘𝑎) ∈ On) |
| 28 | 16, 26, 27 | syl2anc 584 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (𝐺‘𝑎) ∈ On) |
| 29 | | elmapi 8871 |
. . . . . . . . 9
⊢ (𝐻 ∈ (𝐵 ↑m 𝐴) → 𝐻:𝐴⟶𝐵) |
| 30 | 29 | 3ad2ant3 1135 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴)) → 𝐻:𝐴⟶𝐵) |
| 31 | 30 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → 𝐻:𝐴⟶𝐵) |
| 32 | 31 | ffvelcdmda 7084 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (𝐻‘𝑎) ∈ 𝐵) |
| 33 | | onelon 6388 |
. . . . . 6
⊢ ((𝐵 ∈ On ∧ (𝐻‘𝑎) ∈ 𝐵) → (𝐻‘𝑎) ∈ On) |
| 34 | 16, 32, 33 | syl2anc 584 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (𝐻‘𝑎) ∈ On) |
| 35 | | oaass 8581 |
. . . . 5
⊢ (((𝐹‘𝑎) ∈ On ∧ (𝐺‘𝑎) ∈ On ∧ (𝐻‘𝑎) ∈ On) → (((𝐹‘𝑎) +o (𝐺‘𝑎)) +o (𝐻‘𝑎)) = ((𝐹‘𝑎) +o ((𝐺‘𝑎) +o (𝐻‘𝑎)))) |
| 36 | 22, 28, 34, 35 | syl3anc 1372 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (((𝐹‘𝑎) +o (𝐺‘𝑎)) +o (𝐻‘𝑎)) = ((𝐹‘𝑎) +o ((𝐺‘𝑎) +o (𝐻‘𝑎)))) |
| 37 | 3 | adantr 480 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → 𝐹 Fn 𝐴) |
| 38 | 6 | adantr 480 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → 𝐺 Fn 𝐴) |
| 39 | 7 | anim1i 615 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴)) |
| 40 | | fnfvof 7696 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴)) → ((𝐹 ∘f +o 𝐺)‘𝑎) = ((𝐹‘𝑎) +o (𝐺‘𝑎))) |
| 41 | 37, 38, 39, 40 | syl21anc 837 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((𝐹 ∘f +o 𝐺)‘𝑎) = ((𝐹‘𝑎) +o (𝐺‘𝑎))) |
| 42 | 41 | oveq1d 7428 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (((𝐹 ∘f +o 𝐺)‘𝑎) +o (𝐻‘𝑎)) = (((𝐹‘𝑎) +o (𝐺‘𝑎)) +o (𝐻‘𝑎))) |
| 43 | 6, 12 | jca 511 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → (𝐺 Fn 𝐴 ∧ 𝐻 Fn 𝐴)) |
| 44 | | fnfvof 7696 |
. . . . . 6
⊢ (((𝐺 Fn 𝐴 ∧ 𝐻 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴)) → ((𝐺 ∘f +o 𝐻)‘𝑎) = ((𝐺‘𝑎) +o (𝐻‘𝑎))) |
| 45 | 43, 39, 44 | syl2an2r 685 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((𝐺 ∘f +o 𝐻)‘𝑎) = ((𝐺‘𝑎) +o (𝐻‘𝑎))) |
| 46 | 45 | oveq2d 7429 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((𝐹‘𝑎) +o ((𝐺 ∘f +o 𝐻)‘𝑎)) = ((𝐹‘𝑎) +o ((𝐺‘𝑎) +o (𝐻‘𝑎)))) |
| 47 | 36, 42, 46 | 3eqtr4d 2779 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (((𝐹 ∘f +o 𝐺)‘𝑎) +o (𝐻‘𝑎)) = ((𝐹‘𝑎) +o ((𝐺 ∘f +o 𝐻)‘𝑎))) |
| 48 | 9, 12 | jca 511 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → ((𝐹 ∘f +o 𝐺) Fn 𝐴 ∧ 𝐻 Fn 𝐴)) |
| 49 | | fnfvof 7696 |
. . . 4
⊢ ((((𝐹 ∘f
+o 𝐺) Fn 𝐴 ∧ 𝐻 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴)) → (((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻)‘𝑎) = (((𝐹 ∘f +o 𝐺)‘𝑎) +o (𝐻‘𝑎))) |
| 50 | 48, 39, 49 | syl2an2r 685 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻)‘𝑎) = (((𝐹 ∘f +o 𝐺)‘𝑎) +o (𝐻‘𝑎))) |
| 51 | 3, 14 | jca 511 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → (𝐹 Fn 𝐴 ∧ (𝐺 ∘f +o 𝐻) Fn 𝐴)) |
| 52 | | fnfvof 7696 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ (𝐺 ∘f +o 𝐻) Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴)) → ((𝐹 ∘f +o (𝐺 ∘f
+o 𝐻))‘𝑎) = ((𝐹‘𝑎) +o ((𝐺 ∘f +o 𝐻)‘𝑎))) |
| 53 | 51, 39, 52 | syl2an2r 685 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((𝐹 ∘f +o (𝐺 ∘f
+o 𝐻))‘𝑎) = ((𝐹‘𝑎) +o ((𝐺 ∘f +o 𝐻)‘𝑎))) |
| 54 | 47, 50, 53 | 3eqtr4d 2779 |
. 2
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻)‘𝑎) = ((𝐹 ∘f +o (𝐺 ∘f
+o 𝐻))‘𝑎)) |
| 55 | 13, 15, 54 | eqfnfvd 7034 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → ((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻) = (𝐹 ∘f
+o (𝐺
∘f +o 𝐻))) |