Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoaass Structured version   Visualization version   GIF version

Theorem ofoaass 43366
Description: Component-wise addition of ordinal-yielding functions is associative. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoaass (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))

Proof of Theorem ofoaass
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elmapfn 8913 . . . . . 6 (𝐹 ∈ (𝐵m 𝐴) → 𝐹 Fn 𝐴)
213ad2ant1 1134 . . . . 5 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐹 Fn 𝐴)
32adantl 481 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐹 Fn 𝐴)
4 elmapfn 8913 . . . . . 6 (𝐺 ∈ (𝐵m 𝐴) → 𝐺 Fn 𝐴)
543ad2ant2 1135 . . . . 5 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐺 Fn 𝐴)
65adantl 481 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐺 Fn 𝐴)
7 simpll 767 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐴𝑉)
8 inidm 4238 . . . 4 (𝐴𝐴) = 𝐴
93, 6, 7, 7, 8offn 7717 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹f +o 𝐺) Fn 𝐴)
10 elmapfn 8913 . . . . 5 (𝐻 ∈ (𝐵m 𝐴) → 𝐻 Fn 𝐴)
11103ad2ant3 1136 . . . 4 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐻 Fn 𝐴)
1211adantl 481 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐻 Fn 𝐴)
139, 12, 7, 7, 8offn 7717 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) Fn 𝐴)
146, 12, 7, 7, 8offn 7717 . . 3 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐺f +o 𝐻) Fn 𝐴)
153, 14, 7, 7, 8offn 7717 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹f +o (𝐺f +o 𝐻)) Fn 𝐴)
16 simpllr 776 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐵 ∈ On)
17 elmapi 8897 . . . . . . . . 9 (𝐹 ∈ (𝐵m 𝐴) → 𝐹:𝐴𝐵)
18173ad2ant1 1134 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐹:𝐴𝐵)
1918adantl 481 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐹:𝐴𝐵)
2019ffvelcdmda 7111 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ 𝐵)
21 onelon 6417 . . . . . 6 ((𝐵 ∈ On ∧ (𝐹𝑎) ∈ 𝐵) → (𝐹𝑎) ∈ On)
2216, 20, 21syl2anc 584 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ On)
23 elmapi 8897 . . . . . . . . 9 (𝐺 ∈ (𝐵m 𝐴) → 𝐺:𝐴𝐵)
24233ad2ant2 1135 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐺:𝐴𝐵)
2524adantl 481 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐺:𝐴𝐵)
2625ffvelcdmda 7111 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ 𝐵)
27 onelon 6417 . . . . . 6 ((𝐵 ∈ On ∧ (𝐺𝑎) ∈ 𝐵) → (𝐺𝑎) ∈ On)
2816, 26, 27syl2anc 584 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ On)
29 elmapi 8897 . . . . . . . . 9 (𝐻 ∈ (𝐵m 𝐴) → 𝐻:𝐴𝐵)
30293ad2ant3 1136 . . . . . . . 8 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴)) → 𝐻:𝐴𝐵)
3130adantl 481 . . . . . . 7 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → 𝐻:𝐴𝐵)
3231ffvelcdmda 7111 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐻𝑎) ∈ 𝐵)
33 onelon 6417 . . . . . 6 ((𝐵 ∈ On ∧ (𝐻𝑎) ∈ 𝐵) → (𝐻𝑎) ∈ On)
3416, 32, 33syl2anc 584 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐻𝑎) ∈ On)
35 oaass 8607 . . . . 5 (((𝐹𝑎) ∈ On ∧ (𝐺𝑎) ∈ On ∧ (𝐻𝑎) ∈ On) → (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
3622, 28, 34, 35syl3anc 1372 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
373adantr 480 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐹 Fn 𝐴)
386adantr 480 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → 𝐺 Fn 𝐴)
397anim1i 615 . . . . . 6 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (𝐴𝑉𝑎𝐴))
40 fnfvof 7721 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
4137, 38, 39, 40syl21anc 838 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o 𝐺)‘𝑎) = ((𝐹𝑎) +o (𝐺𝑎)))
4241oveq1d 7453 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)) = (((𝐹𝑎) +o (𝐺𝑎)) +o (𝐻𝑎)))
436, 12jca 511 . . . . . 6 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐺 Fn 𝐴𝐻 Fn 𝐴))
44 fnfvof 7721 . . . . . 6 (((𝐺 Fn 𝐴𝐻 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐺f +o 𝐻)‘𝑎) = ((𝐺𝑎) +o (𝐻𝑎)))
4543, 39, 44syl2an2r 685 . . . . 5 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐺f +o 𝐻)‘𝑎) = ((𝐺𝑎) +o (𝐻𝑎)))
4645oveq2d 7454 . . . 4 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)) = ((𝐹𝑎) +o ((𝐺𝑎) +o (𝐻𝑎))))
4736, 42, 463eqtr4d 2787 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
489, 12jca 511 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) Fn 𝐴𝐻 Fn 𝐴))
49 fnfvof 7721 . . . 4 ((((𝐹f +o 𝐺) Fn 𝐴𝐻 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)))
5048, 39, 49syl2an2r 685 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = (((𝐹f +o 𝐺)‘𝑎) +o (𝐻𝑎)))
513, 14jca 511 . . . 4 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → (𝐹 Fn 𝐴 ∧ (𝐺f +o 𝐻) Fn 𝐴))
52 fnfvof 7721 . . . 4 (((𝐹 Fn 𝐴 ∧ (𝐺f +o 𝐻) Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑎) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
5351, 39, 52syl2an2r 685 . . 3 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑎) = ((𝐹𝑎) +o ((𝐺f +o 𝐻)‘𝑎)))
5447, 50, 533eqtr4d 2787 . 2 ((((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) ∧ 𝑎𝐴) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑎) = ((𝐹f +o (𝐺f +o 𝐻))‘𝑎))
5513, 15, 54eqfnfvd 7061 1 (((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  Oncon0 6392   Fn wfn 6564  wf 6565  cfv 6569  (class class class)co 7438  f cof 7702   +o coa 8511  m cmap 8874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-of 7704  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-oadd 8518  df-map 8876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator