Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onvf1odlem3 Structured version   Visualization version   GIF version

Theorem onvf1odlem3 35099
Description: Lemma for onvf1od 35101. The value of 𝐹 at an ordinal 𝐴. (Contributed by BTernaryTau, 2-Dec-2025.)
Hypotheses
Ref Expression
onvf1odlem3.1 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
onvf1odlem3.2 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
onvf1odlem3.3 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
onvf1odlem3.4 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)}
onvf1odlem3.5 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝐴)))
Assertion
Ref Expression
onvf1odlem3 (𝐴 ∈ On → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑤,𝐺   𝑢,𝐴,𝑣   𝑢,𝐹,𝑣   𝑥,𝑤,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐶(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑣,𝑢)   𝑀(𝑥,𝑦,𝑤,𝑣,𝑢)   𝑁(𝑥,𝑦,𝑤,𝑣,𝑢)

Proof of Theorem onvf1odlem3
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onvf1odlem3.3 . . 3 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
21tfr2 8369 . 2 (𝐴 ∈ On → (𝐹𝐴) = ((𝑤 ∈ V ↦ 𝑁)‘(𝐹𝐴)))
31tfr1 8368 . . . . 5 𝐹 Fn On
4 fnfun 6621 . . . . 5 (𝐹 Fn On → Fun 𝐹)
53, 4ax-mp 5 . . . 4 Fun 𝐹
6 resfunexg 7192 . . . 4 ((Fun 𝐹𝐴 ∈ On) → (𝐹𝐴) ∈ V)
75, 6mpan 690 . . 3 (𝐴 ∈ On → (𝐹𝐴) ∈ V)
8 eleq1w 2812 . . . . . . . . . . . . . . 15 (𝑡 = 𝑣 → (𝑡 ∈ ran 𝑟𝑣 ∈ ran 𝑟))
98notbid 318 . . . . . . . . . . . . . 14 (𝑡 = 𝑣 → (¬ 𝑡 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ran 𝑟))
109adantl 481 . . . . . . . . . . . . 13 ((𝑠 = 𝑢𝑡 = 𝑣) → (¬ 𝑡 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ran 𝑟))
11 fveq2 6861 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → (𝑅1𝑠) = (𝑅1𝑢))
1211adantr 480 . . . . . . . . . . . . 13 ((𝑠 = 𝑢𝑡 = 𝑣) → (𝑅1𝑠) = (𝑅1𝑢))
1310, 12cbvrexdva2 3324 . . . . . . . . . . . 12 (𝑠 = 𝑢 → (∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟 ↔ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟))
1413cbvrabv 3419 . . . . . . . . . . 11 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟}
15 rneq 5903 . . . . . . . . . . . . . . . 16 (𝑟 = (𝐹𝐴) → ran 𝑟 = ran (𝐹𝐴))
16 df-ima 5654 . . . . . . . . . . . . . . . 16 (𝐹𝐴) = ran (𝐹𝐴)
1715, 16eqtr4di 2783 . . . . . . . . . . . . . . 15 (𝑟 = (𝐹𝐴) → ran 𝑟 = (𝐹𝐴))
1817eleq2d 2815 . . . . . . . . . . . . . 14 (𝑟 = (𝐹𝐴) → (𝑣 ∈ ran 𝑟𝑣 ∈ (𝐹𝐴)))
1918notbid 318 . . . . . . . . . . . . 13 (𝑟 = (𝐹𝐴) → (¬ 𝑣 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ (𝐹𝐴)))
2019rexbidv 3158 . . . . . . . . . . . 12 (𝑟 = (𝐹𝐴) → (∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟 ↔ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)))
2120rabbidv 3416 . . . . . . . . . . 11 (𝑟 = (𝐹𝐴) → {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)})
2214, 21eqtrid 2777 . . . . . . . . . 10 (𝑟 = (𝐹𝐴) → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)})
2322inteqd 4918 . . . . . . . . 9 (𝑟 = (𝐹𝐴) → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)})
24 onvf1odlem3.4 . . . . . . . . 9 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)}
2523, 24eqtr4di 2783 . . . . . . . 8 (𝑟 = (𝐹𝐴) → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = 𝐵)
2625fveq2d 6865 . . . . . . 7 (𝑟 = (𝐹𝐴) → (𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) = (𝑅1𝐵))
2726, 17difeq12d 4093 . . . . . 6 (𝑟 = (𝐹𝐴) → ((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟) = ((𝑅1𝐵) ∖ (𝐹𝐴)))
2827fveq2d 6865 . . . . 5 (𝑟 = (𝐹𝐴) → (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)) = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝐴))))
29 onvf1odlem3.5 . . . . 5 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝐴)))
3028, 29eqtr4di 2783 . . . 4 (𝑟 = (𝐹𝐴) → (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)) = 𝐶)
31 onvf1odlem3.2 . . . . . 6 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
32 onvf1odlem3.1 . . . . . . . . . 10 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
33 eleq1w 2812 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑡 → (𝑦 ∈ ran 𝑤𝑡 ∈ ran 𝑤))
3433notbid 318 . . . . . . . . . . . . . . 15 (𝑦 = 𝑡 → (¬ 𝑦 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑤))
3534adantl 481 . . . . . . . . . . . . . 14 ((𝑥 = 𝑠𝑦 = 𝑡) → (¬ 𝑦 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑤))
36 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑥 = 𝑠 → (𝑅1𝑥) = (𝑅1𝑠))
3736adantr 480 . . . . . . . . . . . . . 14 ((𝑥 = 𝑠𝑦 = 𝑡) → (𝑅1𝑥) = (𝑅1𝑠))
3835, 37cbvrexdva2 3324 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤 ↔ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤))
3938cbvrabv 3419 . . . . . . . . . . . 12 {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤}
40 rneq 5903 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑟 → ran 𝑤 = ran 𝑟)
4140eleq2d 2815 . . . . . . . . . . . . . . 15 (𝑤 = 𝑟 → (𝑡 ∈ ran 𝑤𝑡 ∈ ran 𝑟))
4241notbid 318 . . . . . . . . . . . . . 14 (𝑤 = 𝑟 → (¬ 𝑡 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑟))
4342rexbidv 3158 . . . . . . . . . . . . 13 (𝑤 = 𝑟 → (∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤 ↔ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟))
4443rabbidv 3416 . . . . . . . . . . . 12 (𝑤 = 𝑟 → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4539, 44eqtrid 2777 . . . . . . . . . . 11 (𝑤 = 𝑟 → {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4645inteqd 4918 . . . . . . . . . 10 (𝑤 = 𝑟 {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4732, 46eqtrid 2777 . . . . . . . . 9 (𝑤 = 𝑟𝑀 = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4847fveq2d 6865 . . . . . . . 8 (𝑤 = 𝑟 → (𝑅1𝑀) = (𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}))
4948, 40difeq12d 4093 . . . . . . 7 (𝑤 = 𝑟 → ((𝑅1𝑀) ∖ ran 𝑤) = ((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟))
5049fveq2d 6865 . . . . . 6 (𝑤 = 𝑟 → (𝐺‘((𝑅1𝑀) ∖ ran 𝑤)) = (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)))
5131, 50eqtrid 2777 . . . . 5 (𝑤 = 𝑟𝑁 = (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)))
5251cbvmptv 5214 . . . 4 (𝑤 ∈ V ↦ 𝑁) = (𝑟 ∈ V ↦ (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)))
5329fvexi 6875 . . . 4 𝐶 ∈ V
5430, 52, 53fvmpt 6971 . . 3 ((𝐹𝐴) ∈ V → ((𝑤 ∈ V ↦ 𝑁)‘(𝐹𝐴)) = 𝐶)
557, 54syl 17 . 2 (𝐴 ∈ On → ((𝑤 ∈ V ↦ 𝑁)‘(𝐹𝐴)) = 𝐶)
562, 55eqtrd 2765 1 (𝐴 ∈ On → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914   cint 4913  cmpt 5191  ran crn 5642  cres 5643  cima 5644  Oncon0 6335  Fun wfun 6508   Fn wfn 6509  cfv 6514  recscrecs 8342  𝑅1cr1 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343
This theorem is referenced by:  onvf1odlem4  35100  onvf1od  35101
  Copyright terms: Public domain W3C validator