Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onvf1odlem3 Structured version   Visualization version   GIF version

Theorem onvf1odlem3 35149
Description: Lemma for onvf1od 35151. The value of 𝐹 at an ordinal 𝐴. (Contributed by BTernaryTau, 2-Dec-2025.)
Hypotheses
Ref Expression
onvf1odlem3.1 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
onvf1odlem3.2 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
onvf1odlem3.3 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
onvf1odlem3.4 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)}
onvf1odlem3.5 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝐴)))
Assertion
Ref Expression
onvf1odlem3 (𝐴 ∈ On → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑤,𝐺   𝑢,𝐴,𝑣   𝑢,𝐹,𝑣   𝑥,𝑤,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐶(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑣,𝑢)   𝑀(𝑥,𝑦,𝑤,𝑣,𝑢)   𝑁(𝑥,𝑦,𝑤,𝑣,𝑢)

Proof of Theorem onvf1odlem3
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onvf1odlem3.3 . . 3 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
21tfr2 8317 . 2 (𝐴 ∈ On → (𝐹𝐴) = ((𝑤 ∈ V ↦ 𝑁)‘(𝐹𝐴)))
31tfr1 8316 . . . . 5 𝐹 Fn On
4 fnfun 6581 . . . . 5 (𝐹 Fn On → Fun 𝐹)
53, 4ax-mp 5 . . . 4 Fun 𝐹
6 resfunexg 7149 . . . 4 ((Fun 𝐹𝐴 ∈ On) → (𝐹𝐴) ∈ V)
75, 6mpan 690 . . 3 (𝐴 ∈ On → (𝐹𝐴) ∈ V)
8 eleq1w 2814 . . . . . . . . . . . . . . 15 (𝑡 = 𝑣 → (𝑡 ∈ ran 𝑟𝑣 ∈ ran 𝑟))
98notbid 318 . . . . . . . . . . . . . 14 (𝑡 = 𝑣 → (¬ 𝑡 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ran 𝑟))
109adantl 481 . . . . . . . . . . . . 13 ((𝑠 = 𝑢𝑡 = 𝑣) → (¬ 𝑡 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ran 𝑟))
11 fveq2 6822 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → (𝑅1𝑠) = (𝑅1𝑢))
1211adantr 480 . . . . . . . . . . . . 13 ((𝑠 = 𝑢𝑡 = 𝑣) → (𝑅1𝑠) = (𝑅1𝑢))
1310, 12cbvrexdva2 3315 . . . . . . . . . . . 12 (𝑠 = 𝑢 → (∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟 ↔ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟))
1413cbvrabv 3405 . . . . . . . . . . 11 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟}
15 rneq 5875 . . . . . . . . . . . . . . . 16 (𝑟 = (𝐹𝐴) → ran 𝑟 = ran (𝐹𝐴))
16 df-ima 5627 . . . . . . . . . . . . . . . 16 (𝐹𝐴) = ran (𝐹𝐴)
1715, 16eqtr4di 2784 . . . . . . . . . . . . . . 15 (𝑟 = (𝐹𝐴) → ran 𝑟 = (𝐹𝐴))
1817eleq2d 2817 . . . . . . . . . . . . . 14 (𝑟 = (𝐹𝐴) → (𝑣 ∈ ran 𝑟𝑣 ∈ (𝐹𝐴)))
1918notbid 318 . . . . . . . . . . . . 13 (𝑟 = (𝐹𝐴) → (¬ 𝑣 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ (𝐹𝐴)))
2019rexbidv 3156 . . . . . . . . . . . 12 (𝑟 = (𝐹𝐴) → (∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟 ↔ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)))
2120rabbidv 3402 . . . . . . . . . . 11 (𝑟 = (𝐹𝐴) → {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)})
2214, 21eqtrid 2778 . . . . . . . . . 10 (𝑟 = (𝐹𝐴) → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)})
2322inteqd 4900 . . . . . . . . 9 (𝑟 = (𝐹𝐴) → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)})
24 onvf1odlem3.4 . . . . . . . . 9 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)}
2523, 24eqtr4di 2784 . . . . . . . 8 (𝑟 = (𝐹𝐴) → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = 𝐵)
2625fveq2d 6826 . . . . . . 7 (𝑟 = (𝐹𝐴) → (𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) = (𝑅1𝐵))
2726, 17difeq12d 4074 . . . . . 6 (𝑟 = (𝐹𝐴) → ((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟) = ((𝑅1𝐵) ∖ (𝐹𝐴)))
2827fveq2d 6826 . . . . 5 (𝑟 = (𝐹𝐴) → (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)) = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝐴))))
29 onvf1odlem3.5 . . . . 5 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝐴)))
3028, 29eqtr4di 2784 . . . 4 (𝑟 = (𝐹𝐴) → (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)) = 𝐶)
31 onvf1odlem3.2 . . . . . 6 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
32 onvf1odlem3.1 . . . . . . . . . 10 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
33 eleq1w 2814 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑡 → (𝑦 ∈ ran 𝑤𝑡 ∈ ran 𝑤))
3433notbid 318 . . . . . . . . . . . . . . 15 (𝑦 = 𝑡 → (¬ 𝑦 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑤))
3534adantl 481 . . . . . . . . . . . . . 14 ((𝑥 = 𝑠𝑦 = 𝑡) → (¬ 𝑦 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑤))
36 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑥 = 𝑠 → (𝑅1𝑥) = (𝑅1𝑠))
3736adantr 480 . . . . . . . . . . . . . 14 ((𝑥 = 𝑠𝑦 = 𝑡) → (𝑅1𝑥) = (𝑅1𝑠))
3835, 37cbvrexdva2 3315 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤 ↔ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤))
3938cbvrabv 3405 . . . . . . . . . . . 12 {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤}
40 rneq 5875 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑟 → ran 𝑤 = ran 𝑟)
4140eleq2d 2817 . . . . . . . . . . . . . . 15 (𝑤 = 𝑟 → (𝑡 ∈ ran 𝑤𝑡 ∈ ran 𝑟))
4241notbid 318 . . . . . . . . . . . . . 14 (𝑤 = 𝑟 → (¬ 𝑡 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑟))
4342rexbidv 3156 . . . . . . . . . . . . 13 (𝑤 = 𝑟 → (∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤 ↔ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟))
4443rabbidv 3402 . . . . . . . . . . . 12 (𝑤 = 𝑟 → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4539, 44eqtrid 2778 . . . . . . . . . . 11 (𝑤 = 𝑟 → {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4645inteqd 4900 . . . . . . . . . 10 (𝑤 = 𝑟 {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4732, 46eqtrid 2778 . . . . . . . . 9 (𝑤 = 𝑟𝑀 = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4847fveq2d 6826 . . . . . . . 8 (𝑤 = 𝑟 → (𝑅1𝑀) = (𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}))
4948, 40difeq12d 4074 . . . . . . 7 (𝑤 = 𝑟 → ((𝑅1𝑀) ∖ ran 𝑤) = ((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟))
5049fveq2d 6826 . . . . . 6 (𝑤 = 𝑟 → (𝐺‘((𝑅1𝑀) ∖ ran 𝑤)) = (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)))
5131, 50eqtrid 2778 . . . . 5 (𝑤 = 𝑟𝑁 = (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)))
5251cbvmptv 5193 . . . 4 (𝑤 ∈ V ↦ 𝑁) = (𝑟 ∈ V ↦ (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)))
5329fvexi 6836 . . . 4 𝐶 ∈ V
5430, 52, 53fvmpt 6929 . . 3 ((𝐹𝐴) ∈ V → ((𝑤 ∈ V ↦ 𝑁)‘(𝐹𝐴)) = 𝐶)
557, 54syl 17 . 2 (𝐴 ∈ On → ((𝑤 ∈ V ↦ 𝑁)‘(𝐹𝐴)) = 𝐶)
562, 55eqtrd 2766 1 (𝐴 ∈ On → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  cdif 3894   cint 4895  cmpt 5170  ran crn 5615  cres 5616  cima 5617  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  cfv 6481  recscrecs 8290  𝑅1cr1 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291
This theorem is referenced by:  onvf1odlem4  35150  onvf1od  35151
  Copyright terms: Public domain W3C validator