| Step | Hyp | Ref
| Expression |
| 1 | | onvf1odlem3.3 |
. . 3
⊢ 𝐹 = recs((𝑤 ∈ V ↦ 𝑁)) |
| 2 | 1 | tfr2 8369 |
. 2
⊢ (𝐴 ∈ On → (𝐹‘𝐴) = ((𝑤 ∈ V ↦ 𝑁)‘(𝐹 ↾ 𝐴))) |
| 3 | 1 | tfr1 8368 |
. . . . 5
⊢ 𝐹 Fn On |
| 4 | | fnfun 6621 |
. . . . 5
⊢ (𝐹 Fn On → Fun 𝐹) |
| 5 | 3, 4 | ax-mp 5 |
. . . 4
⊢ Fun 𝐹 |
| 6 | | resfunexg 7192 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐴 ∈ On) → (𝐹 ↾ 𝐴) ∈ V) |
| 7 | 5, 6 | mpan 690 |
. . 3
⊢ (𝐴 ∈ On → (𝐹 ↾ 𝐴) ∈ V) |
| 8 | | eleq1w 2812 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑣 → (𝑡 ∈ ran 𝑟 ↔ 𝑣 ∈ ran 𝑟)) |
| 9 | 8 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑣 → (¬ 𝑡 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ran 𝑟)) |
| 10 | 9 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑠 = 𝑢 ∧ 𝑡 = 𝑣) → (¬ 𝑡 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ran 𝑟)) |
| 11 | | fveq2 6861 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑢 → (𝑅1‘𝑠) =
(𝑅1‘𝑢)) |
| 12 | 11 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑠 = 𝑢 ∧ 𝑡 = 𝑣) → (𝑅1‘𝑠) =
(𝑅1‘𝑢)) |
| 13 | 10, 12 | cbvrexdva2 3324 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑢 → (∃𝑡 ∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟 ↔ ∃𝑣 ∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ ran 𝑟)) |
| 14 | 13 | cbvrabv 3419 |
. . . . . . . . . . 11
⊢ {𝑠 ∈ On ∣ ∃𝑡 ∈
(𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ ran 𝑟} |
| 15 | | rneq 5903 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = (𝐹 ↾ 𝐴) → ran 𝑟 = ran (𝐹 ↾ 𝐴)) |
| 16 | | df-ima 5654 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) |
| 17 | 15, 16 | eqtr4di 2783 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = (𝐹 ↾ 𝐴) → ran 𝑟 = (𝐹 “ 𝐴)) |
| 18 | 17 | eleq2d 2815 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝐹 ↾ 𝐴) → (𝑣 ∈ ran 𝑟 ↔ 𝑣 ∈ (𝐹 “ 𝐴))) |
| 19 | 18 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (𝐹 ↾ 𝐴) → (¬ 𝑣 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ (𝐹 “ 𝐴))) |
| 20 | 19 | rexbidv 3158 |
. . . . . . . . . . . 12
⊢ (𝑟 = (𝐹 ↾ 𝐴) → (∃𝑣 ∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ ran 𝑟 ↔ ∃𝑣 ∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝐴))) |
| 21 | 20 | rabbidv 3416 |
. . . . . . . . . . 11
⊢ (𝑟 = (𝐹 ↾ 𝐴) → {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝐴)}) |
| 22 | 14, 21 | eqtrid 2777 |
. . . . . . . . . 10
⊢ (𝑟 = (𝐹 ↾ 𝐴) → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝐴)}) |
| 23 | 22 | inteqd 4918 |
. . . . . . . . 9
⊢ (𝑟 = (𝐹 ↾ 𝐴) → ∩ {𝑠 ∈ On ∣ ∃𝑡 ∈
(𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟} = ∩ {𝑢 ∈ On ∣ ∃𝑣 ∈
(𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝐴)}) |
| 24 | | onvf1odlem3.4 |
. . . . . . . . 9
⊢ 𝐵 = ∩
{𝑢 ∈ On ∣
∃𝑣 ∈
(𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝐴)} |
| 25 | 23, 24 | eqtr4di 2783 |
. . . . . . . 8
⊢ (𝑟 = (𝐹 ↾ 𝐴) → ∩ {𝑠 ∈ On ∣ ∃𝑡 ∈
(𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟} = 𝐵) |
| 26 | 25 | fveq2d 6865 |
. . . . . . 7
⊢ (𝑟 = (𝐹 ↾ 𝐴) → (𝑅1‘∩ {𝑠
∈ On ∣ ∃𝑡
∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟}) = (𝑅1‘𝐵)) |
| 27 | 26, 17 | difeq12d 4093 |
. . . . . 6
⊢ (𝑟 = (𝐹 ↾ 𝐴) → ((𝑅1‘∩ {𝑠
∈ On ∣ ∃𝑡
∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟) = ((𝑅1‘𝐵) ∖ (𝐹 “ 𝐴))) |
| 28 | 27 | fveq2d 6865 |
. . . . 5
⊢ (𝑟 = (𝐹 ↾ 𝐴) → (𝐺‘((𝑅1‘∩ {𝑠
∈ On ∣ ∃𝑡
∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)) = (𝐺‘((𝑅1‘𝐵) ∖ (𝐹 “ 𝐴)))) |
| 29 | | onvf1odlem3.5 |
. . . . 5
⊢ 𝐶 = (𝐺‘((𝑅1‘𝐵) ∖ (𝐹 “ 𝐴))) |
| 30 | 28, 29 | eqtr4di 2783 |
. . . 4
⊢ (𝑟 = (𝐹 ↾ 𝐴) → (𝐺‘((𝑅1‘∩ {𝑠
∈ On ∣ ∃𝑡
∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)) = 𝐶) |
| 31 | | onvf1odlem3.2 |
. . . . . 6
⊢ 𝑁 = (𝐺‘((𝑅1‘𝑀) ∖ ran 𝑤)) |
| 32 | | onvf1odlem3.1 |
. . . . . . . . . 10
⊢ 𝑀 = ∩
{𝑥 ∈ On ∣
∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ ran 𝑤} |
| 33 | | eleq1w 2812 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑡 → (𝑦 ∈ ran 𝑤 ↔ 𝑡 ∈ ran 𝑤)) |
| 34 | 33 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑡 → (¬ 𝑦 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑤)) |
| 35 | 34 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 𝑡) → (¬ 𝑦 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑤)) |
| 36 | | fveq2 6861 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑠 → (𝑅1‘𝑥) =
(𝑅1‘𝑠)) |
| 37 | 36 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 𝑡) → (𝑅1‘𝑥) =
(𝑅1‘𝑠)) |
| 38 | 35, 37 | cbvrexdva2 3324 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → (∃𝑦 ∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ ran 𝑤 ↔ ∃𝑡 ∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑤)) |
| 39 | 38 | cbvrabv 3419 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ On ∣ ∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑤} |
| 40 | | rneq 5903 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑟 → ran 𝑤 = ran 𝑟) |
| 41 | 40 | eleq2d 2815 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑟 → (𝑡 ∈ ran 𝑤 ↔ 𝑡 ∈ ran 𝑟)) |
| 42 | 41 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑟 → (¬ 𝑡 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑟)) |
| 43 | 42 | rexbidv 3158 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑟 → (∃𝑡 ∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑤 ↔ ∃𝑡 ∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟)) |
| 44 | 43 | rabbidv 3416 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑟 → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟}) |
| 45 | 39, 44 | eqtrid 2777 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑟 → {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟}) |
| 46 | 45 | inteqd 4918 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑟 → ∩ {𝑥 ∈ On ∣ ∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ ran 𝑤} = ∩ {𝑠 ∈ On ∣ ∃𝑡 ∈
(𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟}) |
| 47 | 32, 46 | eqtrid 2777 |
. . . . . . . . 9
⊢ (𝑤 = 𝑟 → 𝑀 = ∩ {𝑠 ∈ On ∣ ∃𝑡 ∈
(𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟}) |
| 48 | 47 | fveq2d 6865 |
. . . . . . . 8
⊢ (𝑤 = 𝑟 → (𝑅1‘𝑀) =
(𝑅1‘∩ {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟})) |
| 49 | 48, 40 | difeq12d 4093 |
. . . . . . 7
⊢ (𝑤 = 𝑟 → ((𝑅1‘𝑀) ∖ ran 𝑤) = ((𝑅1‘∩ {𝑠
∈ On ∣ ∃𝑡
∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)) |
| 50 | 49 | fveq2d 6865 |
. . . . . 6
⊢ (𝑤 = 𝑟 → (𝐺‘((𝑅1‘𝑀) ∖ ran 𝑤)) = (𝐺‘((𝑅1‘∩ {𝑠
∈ On ∣ ∃𝑡
∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟))) |
| 51 | 31, 50 | eqtrid 2777 |
. . . . 5
⊢ (𝑤 = 𝑟 → 𝑁 = (𝐺‘((𝑅1‘∩ {𝑠
∈ On ∣ ∃𝑡
∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟))) |
| 52 | 51 | cbvmptv 5214 |
. . . 4
⊢ (𝑤 ∈ V ↦ 𝑁) = (𝑟 ∈ V ↦ (𝐺‘((𝑅1‘∩ {𝑠
∈ On ∣ ∃𝑡
∈ (𝑅1‘𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟))) |
| 53 | 29 | fvexi 6875 |
. . . 4
⊢ 𝐶 ∈ V |
| 54 | 30, 52, 53 | fvmpt 6971 |
. . 3
⊢ ((𝐹 ↾ 𝐴) ∈ V → ((𝑤 ∈ V ↦ 𝑁)‘(𝐹 ↾ 𝐴)) = 𝐶) |
| 55 | 7, 54 | syl 17 |
. 2
⊢ (𝐴 ∈ On → ((𝑤 ∈ V ↦ 𝑁)‘(𝐹 ↾ 𝐴)) = 𝐶) |
| 56 | 2, 55 | eqtrd 2765 |
1
⊢ (𝐴 ∈ On → (𝐹‘𝐴) = 𝐶) |