Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onvf1odlem3 Structured version   Visualization version   GIF version

Theorem onvf1odlem3 35085
Description: Lemma for onvf1od 35087. The value of 𝐹 at an ordinal 𝐴. (Contributed by BTernaryTau, 2-Dec-2025.)
Hypotheses
Ref Expression
onvf1odlem3.1 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
onvf1odlem3.2 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
onvf1odlem3.3 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
onvf1odlem3.4 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)}
onvf1odlem3.5 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝐴)))
Assertion
Ref Expression
onvf1odlem3 (𝐴 ∈ On → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑤,𝐺   𝑢,𝐴,𝑣   𝑢,𝐹,𝑣   𝑥,𝑤,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐶(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑣,𝑢)   𝑀(𝑥,𝑦,𝑤,𝑣,𝑢)   𝑁(𝑥,𝑦,𝑤,𝑣,𝑢)

Proof of Theorem onvf1odlem3
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onvf1odlem3.3 . . 3 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
21tfr2 8343 . 2 (𝐴 ∈ On → (𝐹𝐴) = ((𝑤 ∈ V ↦ 𝑁)‘(𝐹𝐴)))
31tfr1 8342 . . . . 5 𝐹 Fn On
4 fnfun 6600 . . . . 5 (𝐹 Fn On → Fun 𝐹)
53, 4ax-mp 5 . . . 4 Fun 𝐹
6 resfunexg 7171 . . . 4 ((Fun 𝐹𝐴 ∈ On) → (𝐹𝐴) ∈ V)
75, 6mpan 690 . . 3 (𝐴 ∈ On → (𝐹𝐴) ∈ V)
8 eleq1w 2811 . . . . . . . . . . . . . . 15 (𝑡 = 𝑣 → (𝑡 ∈ ran 𝑟𝑣 ∈ ran 𝑟))
98notbid 318 . . . . . . . . . . . . . 14 (𝑡 = 𝑣 → (¬ 𝑡 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ran 𝑟))
109adantl 481 . . . . . . . . . . . . 13 ((𝑠 = 𝑢𝑡 = 𝑣) → (¬ 𝑡 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ran 𝑟))
11 fveq2 6840 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → (𝑅1𝑠) = (𝑅1𝑢))
1211adantr 480 . . . . . . . . . . . . 13 ((𝑠 = 𝑢𝑡 = 𝑣) → (𝑅1𝑠) = (𝑅1𝑢))
1310, 12cbvrexdva2 3319 . . . . . . . . . . . 12 (𝑠 = 𝑢 → (∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟 ↔ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟))
1413cbvrabv 3413 . . . . . . . . . . 11 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟}
15 rneq 5889 . . . . . . . . . . . . . . . 16 (𝑟 = (𝐹𝐴) → ran 𝑟 = ran (𝐹𝐴))
16 df-ima 5644 . . . . . . . . . . . . . . . 16 (𝐹𝐴) = ran (𝐹𝐴)
1715, 16eqtr4di 2782 . . . . . . . . . . . . . . 15 (𝑟 = (𝐹𝐴) → ran 𝑟 = (𝐹𝐴))
1817eleq2d 2814 . . . . . . . . . . . . . 14 (𝑟 = (𝐹𝐴) → (𝑣 ∈ ran 𝑟𝑣 ∈ (𝐹𝐴)))
1918notbid 318 . . . . . . . . . . . . 13 (𝑟 = (𝐹𝐴) → (¬ 𝑣 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ (𝐹𝐴)))
2019rexbidv 3157 . . . . . . . . . . . 12 (𝑟 = (𝐹𝐴) → (∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟 ↔ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)))
2120rabbidv 3410 . . . . . . . . . . 11 (𝑟 = (𝐹𝐴) → {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)})
2214, 21eqtrid 2776 . . . . . . . . . 10 (𝑟 = (𝐹𝐴) → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)})
2322inteqd 4911 . . . . . . . . 9 (𝑟 = (𝐹𝐴) → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)})
24 onvf1odlem3.4 . . . . . . . . 9 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)}
2523, 24eqtr4di 2782 . . . . . . . 8 (𝑟 = (𝐹𝐴) → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = 𝐵)
2625fveq2d 6844 . . . . . . 7 (𝑟 = (𝐹𝐴) → (𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) = (𝑅1𝐵))
2726, 17difeq12d 4086 . . . . . 6 (𝑟 = (𝐹𝐴) → ((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟) = ((𝑅1𝐵) ∖ (𝐹𝐴)))
2827fveq2d 6844 . . . . 5 (𝑟 = (𝐹𝐴) → (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)) = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝐴))))
29 onvf1odlem3.5 . . . . 5 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝐴)))
3028, 29eqtr4di 2782 . . . 4 (𝑟 = (𝐹𝐴) → (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)) = 𝐶)
31 onvf1odlem3.2 . . . . . 6 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
32 onvf1odlem3.1 . . . . . . . . . 10 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
33 eleq1w 2811 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑡 → (𝑦 ∈ ran 𝑤𝑡 ∈ ran 𝑤))
3433notbid 318 . . . . . . . . . . . . . . 15 (𝑦 = 𝑡 → (¬ 𝑦 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑤))
3534adantl 481 . . . . . . . . . . . . . 14 ((𝑥 = 𝑠𝑦 = 𝑡) → (¬ 𝑦 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑤))
36 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑥 = 𝑠 → (𝑅1𝑥) = (𝑅1𝑠))
3736adantr 480 . . . . . . . . . . . . . 14 ((𝑥 = 𝑠𝑦 = 𝑡) → (𝑅1𝑥) = (𝑅1𝑠))
3835, 37cbvrexdva2 3319 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤 ↔ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤))
3938cbvrabv 3413 . . . . . . . . . . . 12 {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤}
40 rneq 5889 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑟 → ran 𝑤 = ran 𝑟)
4140eleq2d 2814 . . . . . . . . . . . . . . 15 (𝑤 = 𝑟 → (𝑡 ∈ ran 𝑤𝑡 ∈ ran 𝑟))
4241notbid 318 . . . . . . . . . . . . . 14 (𝑤 = 𝑟 → (¬ 𝑡 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑟))
4342rexbidv 3157 . . . . . . . . . . . . 13 (𝑤 = 𝑟 → (∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤 ↔ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟))
4443rabbidv 3410 . . . . . . . . . . . 12 (𝑤 = 𝑟 → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4539, 44eqtrid 2776 . . . . . . . . . . 11 (𝑤 = 𝑟 → {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4645inteqd 4911 . . . . . . . . . 10 (𝑤 = 𝑟 {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4732, 46eqtrid 2776 . . . . . . . . 9 (𝑤 = 𝑟𝑀 = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4847fveq2d 6844 . . . . . . . 8 (𝑤 = 𝑟 → (𝑅1𝑀) = (𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}))
4948, 40difeq12d 4086 . . . . . . 7 (𝑤 = 𝑟 → ((𝑅1𝑀) ∖ ran 𝑤) = ((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟))
5049fveq2d 6844 . . . . . 6 (𝑤 = 𝑟 → (𝐺‘((𝑅1𝑀) ∖ ran 𝑤)) = (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)))
5131, 50eqtrid 2776 . . . . 5 (𝑤 = 𝑟𝑁 = (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)))
5251cbvmptv 5206 . . . 4 (𝑤 ∈ V ↦ 𝑁) = (𝑟 ∈ V ↦ (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)))
5329fvexi 6854 . . . 4 𝐶 ∈ V
5430, 52, 53fvmpt 6950 . . 3 ((𝐹𝐴) ∈ V → ((𝑤 ∈ V ↦ 𝑁)‘(𝐹𝐴)) = 𝐶)
557, 54syl 17 . 2 (𝐴 ∈ On → ((𝑤 ∈ V ↦ 𝑁)‘(𝐹𝐴)) = 𝐶)
562, 55eqtrd 2764 1 (𝐴 ∈ On → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  {crab 3402  Vcvv 3444  cdif 3908   cint 4906  cmpt 5183  ran crn 5632  cres 5633  cima 5634  Oncon0 6320  Fun wfun 6493   Fn wfn 6494  cfv 6499  recscrecs 8316  𝑅1cr1 9691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317
This theorem is referenced by:  onvf1odlem4  35086  onvf1od  35087
  Copyright terms: Public domain W3C validator