Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onvf1odlem3 Structured version   Visualization version   GIF version

Theorem onvf1odlem3 35088
Description: Lemma for onvf1od 35090. The value of 𝐹 at an ordinal 𝐴. (Contributed by BTernaryTau, 2-Dec-2025.)
Hypotheses
Ref Expression
onvf1odlem3.1 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
onvf1odlem3.2 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
onvf1odlem3.3 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
onvf1odlem3.4 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)}
onvf1odlem3.5 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝐴)))
Assertion
Ref Expression
onvf1odlem3 (𝐴 ∈ On → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑤,𝐺   𝑢,𝐴,𝑣   𝑢,𝐹,𝑣   𝑥,𝑤,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐶(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑣,𝑢)   𝑀(𝑥,𝑦,𝑤,𝑣,𝑢)   𝑁(𝑥,𝑦,𝑤,𝑣,𝑢)

Proof of Theorem onvf1odlem3
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onvf1odlem3.3 . . 3 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
21tfr2 8320 . 2 (𝐴 ∈ On → (𝐹𝐴) = ((𝑤 ∈ V ↦ 𝑁)‘(𝐹𝐴)))
31tfr1 8319 . . . . 5 𝐹 Fn On
4 fnfun 6582 . . . . 5 (𝐹 Fn On → Fun 𝐹)
53, 4ax-mp 5 . . . 4 Fun 𝐹
6 resfunexg 7151 . . . 4 ((Fun 𝐹𝐴 ∈ On) → (𝐹𝐴) ∈ V)
75, 6mpan 690 . . 3 (𝐴 ∈ On → (𝐹𝐴) ∈ V)
8 eleq1w 2811 . . . . . . . . . . . . . . 15 (𝑡 = 𝑣 → (𝑡 ∈ ran 𝑟𝑣 ∈ ran 𝑟))
98notbid 318 . . . . . . . . . . . . . 14 (𝑡 = 𝑣 → (¬ 𝑡 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ran 𝑟))
109adantl 481 . . . . . . . . . . . . 13 ((𝑠 = 𝑢𝑡 = 𝑣) → (¬ 𝑡 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ran 𝑟))
11 fveq2 6822 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → (𝑅1𝑠) = (𝑅1𝑢))
1211adantr 480 . . . . . . . . . . . . 13 ((𝑠 = 𝑢𝑡 = 𝑣) → (𝑅1𝑠) = (𝑅1𝑢))
1310, 12cbvrexdva2 3312 . . . . . . . . . . . 12 (𝑠 = 𝑢 → (∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟 ↔ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟))
1413cbvrabv 3405 . . . . . . . . . . 11 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟}
15 rneq 5878 . . . . . . . . . . . . . . . 16 (𝑟 = (𝐹𝐴) → ran 𝑟 = ran (𝐹𝐴))
16 df-ima 5632 . . . . . . . . . . . . . . . 16 (𝐹𝐴) = ran (𝐹𝐴)
1715, 16eqtr4di 2782 . . . . . . . . . . . . . . 15 (𝑟 = (𝐹𝐴) → ran 𝑟 = (𝐹𝐴))
1817eleq2d 2814 . . . . . . . . . . . . . 14 (𝑟 = (𝐹𝐴) → (𝑣 ∈ ran 𝑟𝑣 ∈ (𝐹𝐴)))
1918notbid 318 . . . . . . . . . . . . 13 (𝑟 = (𝐹𝐴) → (¬ 𝑣 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ (𝐹𝐴)))
2019rexbidv 3153 . . . . . . . . . . . 12 (𝑟 = (𝐹𝐴) → (∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟 ↔ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)))
2120rabbidv 3402 . . . . . . . . . . 11 (𝑟 = (𝐹𝐴) → {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)})
2214, 21eqtrid 2776 . . . . . . . . . 10 (𝑟 = (𝐹𝐴) → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)})
2322inteqd 4901 . . . . . . . . 9 (𝑟 = (𝐹𝐴) → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)})
24 onvf1odlem3.4 . . . . . . . . 9 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝐴)}
2523, 24eqtr4di 2782 . . . . . . . 8 (𝑟 = (𝐹𝐴) → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟} = 𝐵)
2625fveq2d 6826 . . . . . . 7 (𝑟 = (𝐹𝐴) → (𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) = (𝑅1𝐵))
2726, 17difeq12d 4078 . . . . . 6 (𝑟 = (𝐹𝐴) → ((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟) = ((𝑅1𝐵) ∖ (𝐹𝐴)))
2827fveq2d 6826 . . . . 5 (𝑟 = (𝐹𝐴) → (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)) = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝐴))))
29 onvf1odlem3.5 . . . . 5 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝐴)))
3028, 29eqtr4di 2782 . . . 4 (𝑟 = (𝐹𝐴) → (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)) = 𝐶)
31 onvf1odlem3.2 . . . . . 6 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
32 onvf1odlem3.1 . . . . . . . . . 10 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
33 eleq1w 2811 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑡 → (𝑦 ∈ ran 𝑤𝑡 ∈ ran 𝑤))
3433notbid 318 . . . . . . . . . . . . . . 15 (𝑦 = 𝑡 → (¬ 𝑦 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑤))
3534adantl 481 . . . . . . . . . . . . . 14 ((𝑥 = 𝑠𝑦 = 𝑡) → (¬ 𝑦 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑤))
36 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑥 = 𝑠 → (𝑅1𝑥) = (𝑅1𝑠))
3736adantr 480 . . . . . . . . . . . . . 14 ((𝑥 = 𝑠𝑦 = 𝑡) → (𝑅1𝑥) = (𝑅1𝑠))
3835, 37cbvrexdva2 3312 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤 ↔ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤))
3938cbvrabv 3405 . . . . . . . . . . . 12 {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤}
40 rneq 5878 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑟 → ran 𝑤 = ran 𝑟)
4140eleq2d 2814 . . . . . . . . . . . . . . 15 (𝑤 = 𝑟 → (𝑡 ∈ ran 𝑤𝑡 ∈ ran 𝑟))
4241notbid 318 . . . . . . . . . . . . . 14 (𝑤 = 𝑟 → (¬ 𝑡 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑟))
4342rexbidv 3153 . . . . . . . . . . . . 13 (𝑤 = 𝑟 → (∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤 ↔ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟))
4443rabbidv 3402 . . . . . . . . . . . 12 (𝑤 = 𝑟 → {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4539, 44eqtrid 2776 . . . . . . . . . . 11 (𝑤 = 𝑟 → {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4645inteqd 4901 . . . . . . . . . 10 (𝑤 = 𝑟 {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤} = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4732, 46eqtrid 2776 . . . . . . . . 9 (𝑤 = 𝑟𝑀 = {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟})
4847fveq2d 6826 . . . . . . . 8 (𝑤 = 𝑟 → (𝑅1𝑀) = (𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}))
4948, 40difeq12d 4078 . . . . . . 7 (𝑤 = 𝑟 → ((𝑅1𝑀) ∖ ran 𝑤) = ((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟))
5049fveq2d 6826 . . . . . 6 (𝑤 = 𝑟 → (𝐺‘((𝑅1𝑀) ∖ ran 𝑤)) = (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)))
5131, 50eqtrid 2776 . . . . 5 (𝑤 = 𝑟𝑁 = (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)))
5251cbvmptv 5196 . . . 4 (𝑤 ∈ V ↦ 𝑁) = (𝑟 ∈ V ↦ (𝐺‘((𝑅1 {𝑠 ∈ On ∣ ∃𝑡 ∈ (𝑅1𝑠) ¬ 𝑡 ∈ ran 𝑟}) ∖ ran 𝑟)))
5329fvexi 6836 . . . 4 𝐶 ∈ V
5430, 52, 53fvmpt 6930 . . 3 ((𝐹𝐴) ∈ V → ((𝑤 ∈ V ↦ 𝑁)‘(𝐹𝐴)) = 𝐶)
557, 54syl 17 . 2 (𝐴 ∈ On → ((𝑤 ∈ V ↦ 𝑁)‘(𝐹𝐴)) = 𝐶)
562, 55eqtrd 2764 1 (𝐴 ∈ On → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900   cint 4896  cmpt 5173  ran crn 5620  cres 5621  cima 5622  Oncon0 6307  Fun wfun 6476   Fn wfn 6477  cfv 6482  recscrecs 8293  𝑅1cr1 9658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294
This theorem is referenced by:  onvf1odlem4  35089  onvf1od  35090
  Copyright terms: Public domain W3C validator