| Step | Hyp | Ref
| Expression |
| 1 | | onvf1odlem2.1 |
. . 3
⊢ (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧)) |
| 2 | | onvf1odlem1 35097 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On ∃𝑦 ∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴) |
| 3 | | nfcv 2892 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑅1 |
| 4 | | nfrab1 3429 |
. . . . . . . . . 10
⊢
Ⅎ𝑥{𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴} |
| 5 | 4 | nfint 4923 |
. . . . . . . . 9
⊢
Ⅎ𝑥∩ {𝑥
∈ On ∣ ∃𝑦
∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴} |
| 6 | 3, 5 | nffv 6871 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑅1‘∩ {𝑥
∈ On ∣ ∃𝑦
∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴}) |
| 7 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑥 ¬ 𝑣 ∈ 𝐴 |
| 8 | 6, 7 | nfrexw 3289 |
. . . . . . 7
⊢
Ⅎ𝑥∃𝑣 ∈
(𝑅1‘∩ {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴}) ¬ 𝑣 ∈ 𝐴 |
| 9 | | eleq1w 2812 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → (𝑦 ∈ 𝐴 ↔ 𝑣 ∈ 𝐴)) |
| 10 | 9 | notbid 318 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → (¬ 𝑦 ∈ 𝐴 ↔ ¬ 𝑣 ∈ 𝐴)) |
| 11 | 10 | cbvrexvw 3217 |
. . . . . . . 8
⊢
(∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑅1‘𝑥) ¬ 𝑣 ∈ 𝐴) |
| 12 | | fveq2 6861 |
. . . . . . . . 9
⊢ (𝑥 = ∩
{𝑥 ∈ On ∣
∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴} → (𝑅1‘𝑥) =
(𝑅1‘∩ {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴})) |
| 13 | 12 | rexeqdv 3302 |
. . . . . . . 8
⊢ (𝑥 = ∩
{𝑥 ∈ On ∣
∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴} → (∃𝑣 ∈ (𝑅1‘𝑥) ¬ 𝑣 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑅1‘∩ {𝑥
∈ On ∣ ∃𝑦
∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴}) ¬ 𝑣 ∈ 𝐴)) |
| 14 | 11, 13 | bitrid 283 |
. . . . . . 7
⊢ (𝑥 = ∩
{𝑥 ∈ On ∣
∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴} → (∃𝑦 ∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑅1‘∩ {𝑥
∈ On ∣ ∃𝑦
∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴}) ¬ 𝑣 ∈ 𝐴)) |
| 15 | 8, 14 | onminsb 7773 |
. . . . . 6
⊢
(∃𝑥 ∈ On
∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴 → ∃𝑣 ∈ (𝑅1‘∩ {𝑥
∈ On ∣ ∃𝑦
∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴}) ¬ 𝑣 ∈ 𝐴) |
| 16 | | onvf1odlem2.2 |
. . . . . . . 8
⊢ 𝑀 = ∩
{𝑥 ∈ On ∣
∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴} |
| 17 | 16 | fveq2i 6864 |
. . . . . . 7
⊢
(𝑅1‘𝑀) = (𝑅1‘∩ {𝑥
∈ On ∣ ∃𝑦
∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴}) |
| 18 | 17 | rexeqi 3300 |
. . . . . 6
⊢
(∃𝑣 ∈
(𝑅1‘𝑀) ¬ 𝑣 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑅1‘∩ {𝑥
∈ On ∣ ∃𝑦
∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴}) ¬ 𝑣 ∈ 𝐴) |
| 19 | 15, 18 | sylibr 234 |
. . . . 5
⊢
(∃𝑥 ∈ On
∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴 → ∃𝑣 ∈ (𝑅1‘𝑀) ¬ 𝑣 ∈ 𝐴) |
| 20 | 2, 19 | syl 17 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∃𝑣 ∈ (𝑅1‘𝑀) ¬ 𝑣 ∈ 𝐴) |
| 21 | | df-rex 3055 |
. . . . 5
⊢
(∃𝑣 ∈
(𝑅1‘𝑀) ¬ 𝑣 ∈ 𝐴 ↔ ∃𝑣(𝑣 ∈ (𝑅1‘𝑀) ∧ ¬ 𝑣 ∈ 𝐴)) |
| 22 | | nss 4014 |
. . . . 5
⊢ (¬
(𝑅1‘𝑀) ⊆ 𝐴 ↔ ∃𝑣(𝑣 ∈ (𝑅1‘𝑀) ∧ ¬ 𝑣 ∈ 𝐴)) |
| 23 | | ssdif0 4332 |
. . . . . 6
⊢
((𝑅1‘𝑀) ⊆ 𝐴 ↔ ((𝑅1‘𝑀) ∖ 𝐴) = ∅) |
| 24 | 23 | necon3bbii 2973 |
. . . . 5
⊢ (¬
(𝑅1‘𝑀) ⊆ 𝐴 ↔ ((𝑅1‘𝑀) ∖ 𝐴) ≠ ∅) |
| 25 | 21, 22, 24 | 3bitr2i 299 |
. . . 4
⊢
(∃𝑣 ∈
(𝑅1‘𝑀) ¬ 𝑣 ∈ 𝐴 ↔ ((𝑅1‘𝑀) ∖ 𝐴) ≠ ∅) |
| 26 | 20, 25 | sylib 218 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ((𝑅1‘𝑀) ∖ 𝐴) ≠ ∅) |
| 27 | | fvex 6874 |
. . . . 5
⊢
(𝑅1‘𝑀) ∈ V |
| 28 | 27 | difexi 5288 |
. . . 4
⊢
((𝑅1‘𝑀) ∖ 𝐴) ∈ V |
| 29 | | neeq1 2988 |
. . . . 5
⊢ (𝑧 =
((𝑅1‘𝑀) ∖ 𝐴) → (𝑧 ≠ ∅ ↔
((𝑅1‘𝑀) ∖ 𝐴) ≠ ∅)) |
| 30 | | fveq2 6861 |
. . . . . 6
⊢ (𝑧 =
((𝑅1‘𝑀) ∖ 𝐴) → (𝐺‘𝑧) = (𝐺‘((𝑅1‘𝑀) ∖ 𝐴))) |
| 31 | | id 22 |
. . . . . 6
⊢ (𝑧 =
((𝑅1‘𝑀) ∖ 𝐴) → 𝑧 = ((𝑅1‘𝑀) ∖ 𝐴)) |
| 32 | 30, 31 | eleq12d 2823 |
. . . . 5
⊢ (𝑧 =
((𝑅1‘𝑀) ∖ 𝐴) → ((𝐺‘𝑧) ∈ 𝑧 ↔ (𝐺‘((𝑅1‘𝑀) ∖ 𝐴)) ∈
((𝑅1‘𝑀) ∖ 𝐴))) |
| 33 | 29, 32 | imbi12d 344 |
. . . 4
⊢ (𝑧 =
((𝑅1‘𝑀) ∖ 𝐴) → ((𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧) ↔ (((𝑅1‘𝑀) ∖ 𝐴) ≠ ∅ → (𝐺‘((𝑅1‘𝑀) ∖ 𝐴)) ∈
((𝑅1‘𝑀) ∖ 𝐴)))) |
| 34 | 28, 33 | spcv 3574 |
. . 3
⊢
(∀𝑧(𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧) → (((𝑅1‘𝑀) ∖ 𝐴) ≠ ∅ → (𝐺‘((𝑅1‘𝑀) ∖ 𝐴)) ∈
((𝑅1‘𝑀) ∖ 𝐴))) |
| 35 | 1, 26, 34 | syl2im 40 |
. 2
⊢ (𝜑 → (𝐴 ∈ 𝑉 → (𝐺‘((𝑅1‘𝑀) ∖ 𝐴)) ∈
((𝑅1‘𝑀) ∖ 𝐴))) |
| 36 | | onvf1odlem2.3 |
. . 3
⊢ 𝑁 = (𝐺‘((𝑅1‘𝑀) ∖ 𝐴)) |
| 37 | 36 | eleq1i 2820 |
. 2
⊢ (𝑁 ∈
((𝑅1‘𝑀) ∖ 𝐴) ↔ (𝐺‘((𝑅1‘𝑀) ∖ 𝐴)) ∈
((𝑅1‘𝑀) ∖ 𝐴)) |
| 38 | 35, 37 | imbitrrdi 252 |
1
⊢ (𝜑 → (𝐴 ∈ 𝑉 → 𝑁 ∈ ((𝑅1‘𝑀) ∖ 𝐴))) |