Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onvf1odlem4 Structured version   Visualization version   GIF version

Theorem onvf1odlem4 35100
Description: Lemma for onvf1od 35101. If the range of 𝐹 does not exist, then it must equal the universe. (Contributed by BTernaryTau, 4-Dec-2025.)
Hypotheses
Ref Expression
onvf1odlem4.1 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
onvf1odlem4.2 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
onvf1odlem4.3 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
onvf1odlem4.4 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
onvf1odlem4.5 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}
onvf1odlem4.6 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝑡)))
Assertion
Ref Expression
onvf1odlem4 (𝜑 → (¬ ran 𝐹 ∈ V → ran 𝐹 = V))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐺   𝑤,𝐺   𝑥,𝑤,𝑦   𝑡,𝐹,𝑧   𝜑,𝑡,𝑣   𝑢,𝐹,𝑣,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑢)   𝐵(𝑥,𝑦,𝑤,𝑣,𝑢,𝑡)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑡)   𝑀(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)

Proof of Theorem onvf1odlem4
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3460 . . . 4 (ran 𝐹 = V ↔ ∀𝑣 𝑣 ∈ ran 𝐹)
2 exnal 1827 . . . . 5 (∃𝑣 ¬ 𝑣 ∈ ran 𝐹 ↔ ¬ ∀𝑣 𝑣 ∈ ran 𝐹)
3 onvf1odlem4.4 . . . . . . . . . . . . . . . . . 18 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
43tfr1 8368 . . . . . . . . . . . . . . . . 17 𝐹 Fn On
5 fvelrnb 6924 . . . . . . . . . . . . . . . . 17 (𝐹 Fn On → (𝑠 ∈ ran 𝐹 ↔ ∃𝑡 ∈ On (𝐹𝑡) = 𝑠))
64, 5ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ran 𝐹 ↔ ∃𝑡 ∈ On (𝐹𝑡) = 𝑠)
7 onvf1odlem4.2 . . . . . . . . . . . . . . . . . . . . . 22 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
8 onvf1odlem4.3 . . . . . . . . . . . . . . . . . . . . . 22 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
9 onvf1odlem4.5 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}
10 onvf1odlem4.6 . . . . . . . . . . . . . . . . . . . . . 22 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝑡)))
117, 8, 3, 9, 10onvf1odlem3 35099 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ On → (𝐹𝑡) = 𝐶)
1211adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ On) → (𝐹𝑡) = 𝐶)
13 fnfun 6621 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 Fn On → Fun 𝐹)
144, 13ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 Fun 𝐹
15 vex 3454 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑡 ∈ V
1615funimaex 6608 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝐹 → (𝐹𝑡) ∈ V)
1714, 16ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹𝑡) ∈ V
18 onvf1odlem4.1 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
1918, 9, 10onvf1odlem2 35098 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐹𝑡) ∈ V → 𝐶 ∈ ((𝑅1𝐵) ∖ (𝐹𝑡))))
2017, 19mpi 20 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐶 ∈ ((𝑅1𝐵) ∖ (𝐹𝑡)))
2120eldifad 3929 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ (𝑅1𝐵))
2221adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ On) → 𝐶 ∈ (𝑅1𝐵))
2312, 22eqeltrd 2829 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ On) → (𝐹𝑡) ∈ (𝑅1𝐵))
24 rankr1ai 9758 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑡) ∈ (𝑅1𝐵) → (rank‘(𝐹𝑡)) ∈ 𝐵)
25 onvf1odlem1 35097 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑡) ∈ V → ∃𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡))
2617, 25ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)
27 onintrab2 7776 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡) ↔ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)} ∈ On)
289eleq1i 2820 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ On ↔ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)} ∈ On)
2927, 28bitr4i 278 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡) ↔ 𝐵 ∈ On)
3026, 29mpbi 230 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 ∈ On
3130oneli 6451 . . . . . . . . . . . . . . . . . . . . 21 ((rank‘(𝐹𝑡)) ∈ 𝐵 → (rank‘(𝐹𝑡)) ∈ On)
32 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = (rank‘(𝐹𝑡)) → (𝑅1𝑢) = (𝑅1‘(rank‘(𝐹𝑡))))
3332rexeqdv 3302 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = (rank‘(𝐹𝑡)) → (∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡) ↔ ∃𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡))) ¬ 𝑣 ∈ (𝐹𝑡)))
3433onnminsb 7778 . . . . . . . . . . . . . . . . . . . . . 22 ((rank‘(𝐹𝑡)) ∈ On → ((rank‘(𝐹𝑡)) ∈ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)} → ¬ ∃𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡))) ¬ 𝑣 ∈ (𝐹𝑡)))
359eleq2i 2821 . . . . . . . . . . . . . . . . . . . . . 22 ((rank‘(𝐹𝑡)) ∈ 𝐵 ↔ (rank‘(𝐹𝑡)) ∈ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)})
36 dfral2 3082 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡) ↔ ¬ ∃𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡))) ¬ 𝑣 ∈ (𝐹𝑡))
3734, 35, 363imtr4g 296 . . . . . . . . . . . . . . . . . . . . 21 ((rank‘(𝐹𝑡)) ∈ On → ((rank‘(𝐹𝑡)) ∈ 𝐵 → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡)))
3831, 37mpcom 38 . . . . . . . . . . . . . . . . . . . 20 ((rank‘(𝐹𝑡)) ∈ 𝐵 → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡))
39 imassrn 6045 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑡) ⊆ ran 𝐹
4039sseli 3945 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ (𝐹𝑡) → 𝑣 ∈ ran 𝐹)
4140ralimi 3067 . . . . . . . . . . . . . . . . . . . 20 (∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡) → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹)
4238, 41syl 17 . . . . . . . . . . . . . . . . . . 19 ((rank‘(𝐹𝑡)) ∈ 𝐵 → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹)
4323, 24, 423syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ On) → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹)
44 2fveq3 6866 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑡) = 𝑠 → (𝑅1‘(rank‘(𝐹𝑡))) = (𝑅1‘(rank‘𝑠)))
4544raleqdv 3301 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑡) = 𝑠 → (∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹 ↔ ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
4643, 45syl5ibcom 245 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ On) → ((𝐹𝑡) = 𝑠 → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
4746rexlimdva 3135 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑡 ∈ On (𝐹𝑡) = 𝑠 → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
486, 47biimtrid 242 . . . . . . . . . . . . . . 15 (𝜑 → (𝑠 ∈ ran 𝐹 → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
4948imp 406 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ ran 𝐹) → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹)
50 df-ral 3046 . . . . . . . . . . . . . 14 (∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹 ↔ ∀𝑣(𝑣 ∈ (𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹))
5149, 50sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ ran 𝐹) → ∀𝑣(𝑣 ∈ (𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹))
525119.21bi 2190 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ran 𝐹) → (𝑣 ∈ (𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹))
5352con3d 152 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ran 𝐹) → (¬ 𝑣 ∈ ran 𝐹 → ¬ 𝑣 ∈ (𝑅1‘(rank‘𝑠))))
54 rankon 9755 . . . . . . . . . . . 12 (rank‘𝑠) ∈ On
55 vex 3454 . . . . . . . . . . . . 13 𝑣 ∈ V
5655ssrankr1 9795 . . . . . . . . . . . 12 ((rank‘𝑠) ∈ On → ((rank‘𝑠) ⊆ (rank‘𝑣) ↔ ¬ 𝑣 ∈ (𝑅1‘(rank‘𝑠))))
5754, 56ax-mp 5 . . . . . . . . . . 11 ((rank‘𝑠) ⊆ (rank‘𝑣) ↔ ¬ 𝑣 ∈ (𝑅1‘(rank‘𝑠)))
5853, 57imbitrrdi 252 . . . . . . . . . 10 ((𝜑𝑠 ∈ ran 𝐹) → (¬ 𝑣 ∈ ran 𝐹 → (rank‘𝑠) ⊆ (rank‘𝑣)))
5958impancom 451 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → (𝑠 ∈ ran 𝐹 → (rank‘𝑠) ⊆ (rank‘𝑣)))
6059ralrimiv 3125 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣))
61 rankon 9755 . . . . . . . . 9 (rank‘𝑣) ∈ On
62 sseq2 3976 . . . . . . . . . . 11 (𝑟 = (rank‘𝑣) → ((rank‘𝑠) ⊆ 𝑟 ↔ (rank‘𝑠) ⊆ (rank‘𝑣)))
6362ralbidv 3157 . . . . . . . . . 10 (𝑟 = (rank‘𝑣) → (∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟 ↔ ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣)))
6463rspcev 3591 . . . . . . . . 9 (((rank‘𝑣) ∈ On ∧ ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣)) → ∃𝑟 ∈ On ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟)
6561, 64mpan 690 . . . . . . . 8 (∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣) → ∃𝑟 ∈ On ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟)
66 bndrank 9801 . . . . . . . 8 (∃𝑟 ∈ On ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟 → ran 𝐹 ∈ V)
6760, 65, 663syl 18 . . . . . . 7 ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → ran 𝐹 ∈ V)
6867expcom 413 . . . . . 6 𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V))
6968exlimiv 1930 . . . . 5 (∃𝑣 ¬ 𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V))
702, 69sylbir 235 . . . 4 (¬ ∀𝑣 𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V))
711, 70sylnbi 330 . . 3 (¬ ran 𝐹 = V → (𝜑 → ran 𝐹 ∈ V))
7271com12 32 . 2 (𝜑 → (¬ ran 𝐹 = V → ran 𝐹 ∈ V))
7372con1d 145 1 (𝜑 → (¬ ran 𝐹 ∈ V → ran 𝐹 = V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  c0 4299   cint 4913  cmpt 5191  ran crn 5642  cima 5644  Oncon0 6335  Fun wfun 6508   Fn wfn 6509  cfv 6514  recscrecs 8342  𝑅1cr1 9722  rankcrnk 9723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-r1 9724  df-rank 9725
This theorem is referenced by:  onvf1od  35101
  Copyright terms: Public domain W3C validator