Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onvf1odlem4 Structured version   Visualization version   GIF version

Theorem onvf1odlem4 35089
Description: Lemma for onvf1od 35090. If the range of 𝐹 does not exist, then it must equal the universe. (Contributed by BTernaryTau, 4-Dec-2025.)
Hypotheses
Ref Expression
onvf1odlem4.1 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
onvf1odlem4.2 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
onvf1odlem4.3 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
onvf1odlem4.4 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
onvf1odlem4.5 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}
onvf1odlem4.6 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝑡)))
Assertion
Ref Expression
onvf1odlem4 (𝜑 → (¬ ran 𝐹 ∈ V → ran 𝐹 = V))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐺   𝑤,𝐺   𝑥,𝑤,𝑦   𝑡,𝐹,𝑧   𝜑,𝑡,𝑣   𝑢,𝐹,𝑣,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑢)   𝐵(𝑥,𝑦,𝑤,𝑣,𝑢,𝑡)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑡)   𝑀(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)

Proof of Theorem onvf1odlem4
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3446 . . . 4 (ran 𝐹 = V ↔ ∀𝑣 𝑣 ∈ ran 𝐹)
2 exnal 1827 . . . . 5 (∃𝑣 ¬ 𝑣 ∈ ran 𝐹 ↔ ¬ ∀𝑣 𝑣 ∈ ran 𝐹)
3 onvf1odlem4.4 . . . . . . . . . . . . . . . . . 18 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
43tfr1 8319 . . . . . . . . . . . . . . . . 17 𝐹 Fn On
5 fvelrnb 6883 . . . . . . . . . . . . . . . . 17 (𝐹 Fn On → (𝑠 ∈ ran 𝐹 ↔ ∃𝑡 ∈ On (𝐹𝑡) = 𝑠))
64, 5ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ran 𝐹 ↔ ∃𝑡 ∈ On (𝐹𝑡) = 𝑠)
7 onvf1odlem4.2 . . . . . . . . . . . . . . . . . . . . . 22 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
8 onvf1odlem4.3 . . . . . . . . . . . . . . . . . . . . . 22 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
9 onvf1odlem4.5 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}
10 onvf1odlem4.6 . . . . . . . . . . . . . . . . . . . . . 22 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝑡)))
117, 8, 3, 9, 10onvf1odlem3 35088 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ On → (𝐹𝑡) = 𝐶)
1211adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ On) → (𝐹𝑡) = 𝐶)
13 fnfun 6582 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 Fn On → Fun 𝐹)
144, 13ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 Fun 𝐹
15 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑡 ∈ V
1615funimaex 6570 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝐹 → (𝐹𝑡) ∈ V)
1714, 16ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹𝑡) ∈ V
18 onvf1odlem4.1 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
1918, 9, 10onvf1odlem2 35087 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐹𝑡) ∈ V → 𝐶 ∈ ((𝑅1𝐵) ∖ (𝐹𝑡))))
2017, 19mpi 20 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐶 ∈ ((𝑅1𝐵) ∖ (𝐹𝑡)))
2120eldifad 3915 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ (𝑅1𝐵))
2221adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ On) → 𝐶 ∈ (𝑅1𝐵))
2312, 22eqeltrd 2828 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ On) → (𝐹𝑡) ∈ (𝑅1𝐵))
24 rankr1ai 9694 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑡) ∈ (𝑅1𝐵) → (rank‘(𝐹𝑡)) ∈ 𝐵)
25 onvf1odlem1 35086 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑡) ∈ V → ∃𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡))
2617, 25ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)
27 onintrab2 7733 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡) ↔ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)} ∈ On)
289eleq1i 2819 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ On ↔ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)} ∈ On)
2927, 28bitr4i 278 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡) ↔ 𝐵 ∈ On)
3026, 29mpbi 230 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 ∈ On
3130oneli 6422 . . . . . . . . . . . . . . . . . . . . 21 ((rank‘(𝐹𝑡)) ∈ 𝐵 → (rank‘(𝐹𝑡)) ∈ On)
32 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = (rank‘(𝐹𝑡)) → (𝑅1𝑢) = (𝑅1‘(rank‘(𝐹𝑡))))
3332rexeqdv 3290 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = (rank‘(𝐹𝑡)) → (∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡) ↔ ∃𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡))) ¬ 𝑣 ∈ (𝐹𝑡)))
3433onnminsb 7735 . . . . . . . . . . . . . . . . . . . . . 22 ((rank‘(𝐹𝑡)) ∈ On → ((rank‘(𝐹𝑡)) ∈ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)} → ¬ ∃𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡))) ¬ 𝑣 ∈ (𝐹𝑡)))
359eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . 22 ((rank‘(𝐹𝑡)) ∈ 𝐵 ↔ (rank‘(𝐹𝑡)) ∈ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)})
36 dfral2 3080 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡) ↔ ¬ ∃𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡))) ¬ 𝑣 ∈ (𝐹𝑡))
3734, 35, 363imtr4g 296 . . . . . . . . . . . . . . . . . . . . 21 ((rank‘(𝐹𝑡)) ∈ On → ((rank‘(𝐹𝑡)) ∈ 𝐵 → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡)))
3831, 37mpcom 38 . . . . . . . . . . . . . . . . . . . 20 ((rank‘(𝐹𝑡)) ∈ 𝐵 → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡))
39 imassrn 6022 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑡) ⊆ ran 𝐹
4039sseli 3931 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ (𝐹𝑡) → 𝑣 ∈ ran 𝐹)
4140ralimi 3066 . . . . . . . . . . . . . . . . . . . 20 (∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡) → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹)
4238, 41syl 17 . . . . . . . . . . . . . . . . . . 19 ((rank‘(𝐹𝑡)) ∈ 𝐵 → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹)
4323, 24, 423syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ On) → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹)
44 2fveq3 6827 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑡) = 𝑠 → (𝑅1‘(rank‘(𝐹𝑡))) = (𝑅1‘(rank‘𝑠)))
4544raleqdv 3289 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑡) = 𝑠 → (∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹 ↔ ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
4643, 45syl5ibcom 245 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ On) → ((𝐹𝑡) = 𝑠 → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
4746rexlimdva 3130 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑡 ∈ On (𝐹𝑡) = 𝑠 → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
486, 47biimtrid 242 . . . . . . . . . . . . . . 15 (𝜑 → (𝑠 ∈ ran 𝐹 → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
4948imp 406 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ ran 𝐹) → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹)
50 df-ral 3045 . . . . . . . . . . . . . 14 (∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹 ↔ ∀𝑣(𝑣 ∈ (𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹))
5149, 50sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ ran 𝐹) → ∀𝑣(𝑣 ∈ (𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹))
525119.21bi 2190 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ran 𝐹) → (𝑣 ∈ (𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹))
5352con3d 152 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ran 𝐹) → (¬ 𝑣 ∈ ran 𝐹 → ¬ 𝑣 ∈ (𝑅1‘(rank‘𝑠))))
54 rankon 9691 . . . . . . . . . . . 12 (rank‘𝑠) ∈ On
55 vex 3440 . . . . . . . . . . . . 13 𝑣 ∈ V
5655ssrankr1 9731 . . . . . . . . . . . 12 ((rank‘𝑠) ∈ On → ((rank‘𝑠) ⊆ (rank‘𝑣) ↔ ¬ 𝑣 ∈ (𝑅1‘(rank‘𝑠))))
5754, 56ax-mp 5 . . . . . . . . . . 11 ((rank‘𝑠) ⊆ (rank‘𝑣) ↔ ¬ 𝑣 ∈ (𝑅1‘(rank‘𝑠)))
5853, 57imbitrrdi 252 . . . . . . . . . 10 ((𝜑𝑠 ∈ ran 𝐹) → (¬ 𝑣 ∈ ran 𝐹 → (rank‘𝑠) ⊆ (rank‘𝑣)))
5958impancom 451 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → (𝑠 ∈ ran 𝐹 → (rank‘𝑠) ⊆ (rank‘𝑣)))
6059ralrimiv 3120 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣))
61 rankon 9691 . . . . . . . . 9 (rank‘𝑣) ∈ On
62 sseq2 3962 . . . . . . . . . . 11 (𝑟 = (rank‘𝑣) → ((rank‘𝑠) ⊆ 𝑟 ↔ (rank‘𝑠) ⊆ (rank‘𝑣)))
6362ralbidv 3152 . . . . . . . . . 10 (𝑟 = (rank‘𝑣) → (∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟 ↔ ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣)))
6463rspcev 3577 . . . . . . . . 9 (((rank‘𝑣) ∈ On ∧ ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣)) → ∃𝑟 ∈ On ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟)
6561, 64mpan 690 . . . . . . . 8 (∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣) → ∃𝑟 ∈ On ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟)
66 bndrank 9737 . . . . . . . 8 (∃𝑟 ∈ On ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟 → ran 𝐹 ∈ V)
6760, 65, 663syl 18 . . . . . . 7 ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → ran 𝐹 ∈ V)
6867expcom 413 . . . . . 6 𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V))
6968exlimiv 1930 . . . . 5 (∃𝑣 ¬ 𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V))
702, 69sylbir 235 . . . 4 (¬ ∀𝑣 𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V))
711, 70sylnbi 330 . . 3 (¬ ran 𝐹 = V → (𝜑 → ran 𝐹 ∈ V))
7271com12 32 . 2 (𝜑 → (¬ ran 𝐹 = V → ran 𝐹 ∈ V))
7372con1d 145 1 (𝜑 → (¬ ran 𝐹 ∈ V → ran 𝐹 = V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  wss 3903  c0 4284   cint 4896  cmpt 5173  ran crn 5620  cima 5622  Oncon0 6307  Fun wfun 6476   Fn wfn 6477  cfv 6482  recscrecs 8293  𝑅1cr1 9658  rankcrnk 9659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660  df-rank 9661
This theorem is referenced by:  onvf1od  35090
  Copyright terms: Public domain W3C validator