Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onvf1odlem4 Structured version   Visualization version   GIF version

Theorem onvf1odlem4 35086
Description: Lemma for onvf1od 35087. If the range of 𝐹 does not exist, then it must equal the universe. (Contributed by BTernaryTau, 4-Dec-2025.)
Hypotheses
Ref Expression
onvf1odlem4.1 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
onvf1odlem4.2 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
onvf1odlem4.3 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
onvf1odlem4.4 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
onvf1odlem4.5 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}
onvf1odlem4.6 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝑡)))
Assertion
Ref Expression
onvf1odlem4 (𝜑 → (¬ ran 𝐹 ∈ V → ran 𝐹 = V))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐺   𝑤,𝐺   𝑥,𝑤,𝑦   𝑡,𝐹,𝑧   𝜑,𝑡,𝑣   𝑢,𝐹,𝑣,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑢)   𝐵(𝑥,𝑦,𝑤,𝑣,𝑢,𝑡)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑡)   𝑀(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)

Proof of Theorem onvf1odlem4
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3454 . . . 4 (ran 𝐹 = V ↔ ∀𝑣 𝑣 ∈ ran 𝐹)
2 exnal 1827 . . . . 5 (∃𝑣 ¬ 𝑣 ∈ ran 𝐹 ↔ ¬ ∀𝑣 𝑣 ∈ ran 𝐹)
3 onvf1odlem4.4 . . . . . . . . . . . . . . . . . 18 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
43tfr1 8342 . . . . . . . . . . . . . . . . 17 𝐹 Fn On
5 fvelrnb 6903 . . . . . . . . . . . . . . . . 17 (𝐹 Fn On → (𝑠 ∈ ran 𝐹 ↔ ∃𝑡 ∈ On (𝐹𝑡) = 𝑠))
64, 5ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ran 𝐹 ↔ ∃𝑡 ∈ On (𝐹𝑡) = 𝑠)
7 onvf1odlem4.2 . . . . . . . . . . . . . . . . . . . . . 22 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
8 onvf1odlem4.3 . . . . . . . . . . . . . . . . . . . . . 22 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
9 onvf1odlem4.5 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}
10 onvf1odlem4.6 . . . . . . . . . . . . . . . . . . . . . 22 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝑡)))
117, 8, 3, 9, 10onvf1odlem3 35085 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ On → (𝐹𝑡) = 𝐶)
1211adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ On) → (𝐹𝑡) = 𝐶)
13 fnfun 6600 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 Fn On → Fun 𝐹)
144, 13ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 Fun 𝐹
15 vex 3448 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑡 ∈ V
1615funimaex 6588 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝐹 → (𝐹𝑡) ∈ V)
1714, 16ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹𝑡) ∈ V
18 onvf1odlem4.1 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
1918, 9, 10onvf1odlem2 35084 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐹𝑡) ∈ V → 𝐶 ∈ ((𝑅1𝐵) ∖ (𝐹𝑡))))
2017, 19mpi 20 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐶 ∈ ((𝑅1𝐵) ∖ (𝐹𝑡)))
2120eldifad 3923 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ (𝑅1𝐵))
2221adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ On) → 𝐶 ∈ (𝑅1𝐵))
2312, 22eqeltrd 2828 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ On) → (𝐹𝑡) ∈ (𝑅1𝐵))
24 rankr1ai 9727 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑡) ∈ (𝑅1𝐵) → (rank‘(𝐹𝑡)) ∈ 𝐵)
25 onvf1odlem1 35083 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑡) ∈ V → ∃𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡))
2617, 25ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)
27 onintrab2 7753 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡) ↔ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)} ∈ On)
289eleq1i 2819 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ On ↔ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)} ∈ On)
2927, 28bitr4i 278 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡) ↔ 𝐵 ∈ On)
3026, 29mpbi 230 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 ∈ On
3130oneli 6436 . . . . . . . . . . . . . . . . . . . . 21 ((rank‘(𝐹𝑡)) ∈ 𝐵 → (rank‘(𝐹𝑡)) ∈ On)
32 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = (rank‘(𝐹𝑡)) → (𝑅1𝑢) = (𝑅1‘(rank‘(𝐹𝑡))))
3332rexeqdv 3297 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = (rank‘(𝐹𝑡)) → (∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡) ↔ ∃𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡))) ¬ 𝑣 ∈ (𝐹𝑡)))
3433onnminsb 7755 . . . . . . . . . . . . . . . . . . . . . 22 ((rank‘(𝐹𝑡)) ∈ On → ((rank‘(𝐹𝑡)) ∈ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)} → ¬ ∃𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡))) ¬ 𝑣 ∈ (𝐹𝑡)))
359eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . 22 ((rank‘(𝐹𝑡)) ∈ 𝐵 ↔ (rank‘(𝐹𝑡)) ∈ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)})
36 dfral2 3081 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡) ↔ ¬ ∃𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡))) ¬ 𝑣 ∈ (𝐹𝑡))
3734, 35, 363imtr4g 296 . . . . . . . . . . . . . . . . . . . . 21 ((rank‘(𝐹𝑡)) ∈ On → ((rank‘(𝐹𝑡)) ∈ 𝐵 → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡)))
3831, 37mpcom 38 . . . . . . . . . . . . . . . . . . . 20 ((rank‘(𝐹𝑡)) ∈ 𝐵 → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡))
39 imassrn 6031 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑡) ⊆ ran 𝐹
4039sseli 3939 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ (𝐹𝑡) → 𝑣 ∈ ran 𝐹)
4140ralimi 3066 . . . . . . . . . . . . . . . . . . . 20 (∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡) → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹)
4238, 41syl 17 . . . . . . . . . . . . . . . . . . 19 ((rank‘(𝐹𝑡)) ∈ 𝐵 → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹)
4323, 24, 423syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ On) → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹)
44 2fveq3 6845 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑡) = 𝑠 → (𝑅1‘(rank‘(𝐹𝑡))) = (𝑅1‘(rank‘𝑠)))
4544raleqdv 3296 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑡) = 𝑠 → (∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹 ↔ ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
4643, 45syl5ibcom 245 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ On) → ((𝐹𝑡) = 𝑠 → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
4746rexlimdva 3134 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑡 ∈ On (𝐹𝑡) = 𝑠 → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
486, 47biimtrid 242 . . . . . . . . . . . . . . 15 (𝜑 → (𝑠 ∈ ran 𝐹 → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
4948imp 406 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ ran 𝐹) → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹)
50 df-ral 3045 . . . . . . . . . . . . . 14 (∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹 ↔ ∀𝑣(𝑣 ∈ (𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹))
5149, 50sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ ran 𝐹) → ∀𝑣(𝑣 ∈ (𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹))
525119.21bi 2190 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ran 𝐹) → (𝑣 ∈ (𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹))
5352con3d 152 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ran 𝐹) → (¬ 𝑣 ∈ ran 𝐹 → ¬ 𝑣 ∈ (𝑅1‘(rank‘𝑠))))
54 rankon 9724 . . . . . . . . . . . 12 (rank‘𝑠) ∈ On
55 vex 3448 . . . . . . . . . . . . 13 𝑣 ∈ V
5655ssrankr1 9764 . . . . . . . . . . . 12 ((rank‘𝑠) ∈ On → ((rank‘𝑠) ⊆ (rank‘𝑣) ↔ ¬ 𝑣 ∈ (𝑅1‘(rank‘𝑠))))
5754, 56ax-mp 5 . . . . . . . . . . 11 ((rank‘𝑠) ⊆ (rank‘𝑣) ↔ ¬ 𝑣 ∈ (𝑅1‘(rank‘𝑠)))
5853, 57imbitrrdi 252 . . . . . . . . . 10 ((𝜑𝑠 ∈ ran 𝐹) → (¬ 𝑣 ∈ ran 𝐹 → (rank‘𝑠) ⊆ (rank‘𝑣)))
5958impancom 451 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → (𝑠 ∈ ran 𝐹 → (rank‘𝑠) ⊆ (rank‘𝑣)))
6059ralrimiv 3124 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣))
61 rankon 9724 . . . . . . . . 9 (rank‘𝑣) ∈ On
62 sseq2 3970 . . . . . . . . . . 11 (𝑟 = (rank‘𝑣) → ((rank‘𝑠) ⊆ 𝑟 ↔ (rank‘𝑠) ⊆ (rank‘𝑣)))
6362ralbidv 3156 . . . . . . . . . 10 (𝑟 = (rank‘𝑣) → (∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟 ↔ ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣)))
6463rspcev 3585 . . . . . . . . 9 (((rank‘𝑣) ∈ On ∧ ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣)) → ∃𝑟 ∈ On ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟)
6561, 64mpan 690 . . . . . . . 8 (∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣) → ∃𝑟 ∈ On ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟)
66 bndrank 9770 . . . . . . . 8 (∃𝑟 ∈ On ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟 → ran 𝐹 ∈ V)
6760, 65, 663syl 18 . . . . . . 7 ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → ran 𝐹 ∈ V)
6867expcom 413 . . . . . 6 𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V))
6968exlimiv 1930 . . . . 5 (∃𝑣 ¬ 𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V))
702, 69sylbir 235 . . . 4 (¬ ∀𝑣 𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V))
711, 70sylnbi 330 . . 3 (¬ ran 𝐹 = V → (𝜑 → ran 𝐹 ∈ V))
7271com12 32 . 2 (𝜑 → (¬ ran 𝐹 = V → ran 𝐹 ∈ V))
7372con1d 145 1 (𝜑 → (¬ ran 𝐹 ∈ V → ran 𝐹 = V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cdif 3908  wss 3911  c0 4292   cint 4906  cmpt 5183  ran crn 5632  cima 5634  Oncon0 6320  Fun wfun 6493   Fn wfn 6494  cfv 6499  recscrecs 8316  𝑅1cr1 9691  rankcrnk 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-r1 9693  df-rank 9694
This theorem is referenced by:  onvf1od  35087
  Copyright terms: Public domain W3C validator