| Step | Hyp | Ref
| Expression |
| 1 | | eqv 3460 |
. . . 4
⊢ (ran
𝐹 = V ↔ ∀𝑣 𝑣 ∈ ran 𝐹) |
| 2 | | exnal 1827 |
. . . . 5
⊢
(∃𝑣 ¬
𝑣 ∈ ran 𝐹 ↔ ¬ ∀𝑣 𝑣 ∈ ran 𝐹) |
| 3 | | onvf1odlem4.4 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐹 = recs((𝑤 ∈ V ↦ 𝑁)) |
| 4 | 3 | tfr1 8368 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐹 Fn On |
| 5 | | fvelrnb 6924 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn On → (𝑠 ∈ ran 𝐹 ↔ ∃𝑡 ∈ On (𝐹‘𝑡) = 𝑠)) |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ran 𝐹 ↔ ∃𝑡 ∈ On (𝐹‘𝑡) = 𝑠) |
| 7 | | onvf1odlem4.2 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑀 = ∩
{𝑥 ∈ On ∣
∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ ran 𝑤} |
| 8 | | onvf1odlem4.3 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑁 = (𝐺‘((𝑅1‘𝑀) ∖ ran 𝑤)) |
| 9 | | onvf1odlem4.5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐵 = ∩
{𝑢 ∈ On ∣
∃𝑣 ∈
(𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)} |
| 10 | | onvf1odlem4.6 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐶 = (𝐺‘((𝑅1‘𝐵) ∖ (𝐹 “ 𝑡))) |
| 11 | 7, 8, 3, 9, 10 | onvf1odlem3 35099 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ On → (𝐹‘𝑡) = 𝐶) |
| 12 | 11 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ On) → (𝐹‘𝑡) = 𝐶) |
| 13 | | fnfun 6621 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐹 Fn On → Fun 𝐹) |
| 14 | 4, 13 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ Fun 𝐹 |
| 15 | | vex 3454 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑡 ∈ V |
| 16 | 15 | funimaex 6608 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (Fun
𝐹 → (𝐹 “ 𝑡) ∈ V) |
| 17 | 14, 16 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 “ 𝑡) ∈ V |
| 18 | | onvf1odlem4.1 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧)) |
| 19 | 18, 9, 10 | onvf1odlem2 35098 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝐹 “ 𝑡) ∈ V → 𝐶 ∈ ((𝑅1‘𝐵) ∖ (𝐹 “ 𝑡)))) |
| 20 | 17, 19 | mpi 20 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐶 ∈ ((𝑅1‘𝐵) ∖ (𝐹 “ 𝑡))) |
| 21 | 20 | eldifad 3929 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐶 ∈ (𝑅1‘𝐵)) |
| 22 | 21 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ On) → 𝐶 ∈ (𝑅1‘𝐵)) |
| 23 | 12, 22 | eqeltrd 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ On) → (𝐹‘𝑡) ∈ (𝑅1‘𝐵)) |
| 24 | | rankr1ai 9758 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑡) ∈ (𝑅1‘𝐵) → (rank‘(𝐹‘𝑡)) ∈ 𝐵) |
| 25 | | onvf1odlem1 35097 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹 “ 𝑡) ∈ V → ∃𝑢 ∈ On ∃𝑣 ∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)) |
| 26 | 17, 25 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
∃𝑢 ∈ On
∃𝑣 ∈
(𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡) |
| 27 | | onintrab2 7776 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃𝑢 ∈ On
∃𝑣 ∈
(𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡) ↔ ∩ {𝑢 ∈ On ∣ ∃𝑣 ∈
(𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)} ∈ On) |
| 28 | 9 | eleq1i 2820 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐵 ∈ On ↔ ∩ {𝑢
∈ On ∣ ∃𝑣
∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)} ∈ On) |
| 29 | 27, 28 | bitr4i 278 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∃𝑢 ∈ On
∃𝑣 ∈
(𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡) ↔ 𝐵 ∈ On) |
| 30 | 26, 29 | mpbi 230 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐵 ∈ On |
| 31 | 30 | oneli 6451 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((rank‘(𝐹‘𝑡)) ∈ 𝐵 → (rank‘(𝐹‘𝑡)) ∈ On) |
| 32 | | fveq2 6861 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 = (rank‘(𝐹‘𝑡)) → (𝑅1‘𝑢) =
(𝑅1‘(rank‘(𝐹‘𝑡)))) |
| 33 | 32 | rexeqdv 3302 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 = (rank‘(𝐹‘𝑡)) → (∃𝑣 ∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡) ↔ ∃𝑣 ∈
(𝑅1‘(rank‘(𝐹‘𝑡))) ¬ 𝑣 ∈ (𝐹 “ 𝑡))) |
| 34 | 33 | onnminsb 7778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((rank‘(𝐹‘𝑡)) ∈ On → ((rank‘(𝐹‘𝑡)) ∈ ∩ {𝑢 ∈ On ∣ ∃𝑣 ∈
(𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)} → ¬ ∃𝑣 ∈
(𝑅1‘(rank‘(𝐹‘𝑡))) ¬ 𝑣 ∈ (𝐹 “ 𝑡))) |
| 35 | 9 | eleq2i 2821 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((rank‘(𝐹‘𝑡)) ∈ 𝐵 ↔ (rank‘(𝐹‘𝑡)) ∈ ∩ {𝑢 ∈ On ∣ ∃𝑣 ∈
(𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)}) |
| 36 | | dfral2 3082 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑣 ∈
(𝑅1‘(rank‘(𝐹‘𝑡)))𝑣 ∈ (𝐹 “ 𝑡) ↔ ¬ ∃𝑣 ∈
(𝑅1‘(rank‘(𝐹‘𝑡))) ¬ 𝑣 ∈ (𝐹 “ 𝑡)) |
| 37 | 34, 35, 36 | 3imtr4g 296 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((rank‘(𝐹‘𝑡)) ∈ On → ((rank‘(𝐹‘𝑡)) ∈ 𝐵 → ∀𝑣 ∈
(𝑅1‘(rank‘(𝐹‘𝑡)))𝑣 ∈ (𝐹 “ 𝑡))) |
| 38 | 31, 37 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((rank‘(𝐹‘𝑡)) ∈ 𝐵 → ∀𝑣 ∈
(𝑅1‘(rank‘(𝐹‘𝑡)))𝑣 ∈ (𝐹 “ 𝑡)) |
| 39 | | imassrn 6045 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 “ 𝑡) ⊆ ran 𝐹 |
| 40 | 39 | sseli 3945 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ (𝐹 “ 𝑡) → 𝑣 ∈ ran 𝐹) |
| 41 | 40 | ralimi 3067 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑣 ∈
(𝑅1‘(rank‘(𝐹‘𝑡)))𝑣 ∈ (𝐹 “ 𝑡) → ∀𝑣 ∈
(𝑅1‘(rank‘(𝐹‘𝑡)))𝑣 ∈ ran 𝐹) |
| 42 | 38, 41 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
((rank‘(𝐹‘𝑡)) ∈ 𝐵 → ∀𝑣 ∈
(𝑅1‘(rank‘(𝐹‘𝑡)))𝑣 ∈ ran 𝐹) |
| 43 | 23, 24, 42 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ On) → ∀𝑣 ∈
(𝑅1‘(rank‘(𝐹‘𝑡)))𝑣 ∈ ran 𝐹) |
| 44 | | 2fveq3 6866 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑡) = 𝑠 →
(𝑅1‘(rank‘(𝐹‘𝑡))) =
(𝑅1‘(rank‘𝑠))) |
| 45 | 44 | raleqdv 3301 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑡) = 𝑠 → (∀𝑣 ∈
(𝑅1‘(rank‘(𝐹‘𝑡)))𝑣 ∈ ran 𝐹 ↔ ∀𝑣 ∈
(𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹)) |
| 46 | 43, 45 | syl5ibcom 245 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ On) → ((𝐹‘𝑡) = 𝑠 → ∀𝑣 ∈
(𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹)) |
| 47 | 46 | rexlimdva 3135 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (∃𝑡 ∈ On (𝐹‘𝑡) = 𝑠 → ∀𝑣 ∈
(𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹)) |
| 48 | 6, 47 | biimtrid 242 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑠 ∈ ran 𝐹 → ∀𝑣 ∈
(𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹)) |
| 49 | 48 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐹) → ∀𝑣 ∈
(𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹) |
| 50 | | df-ral 3046 |
. . . . . . . . . . . . . 14
⊢
(∀𝑣 ∈
(𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹 ↔ ∀𝑣(𝑣 ∈
(𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹)) |
| 51 | 49, 50 | sylib 218 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐹) → ∀𝑣(𝑣 ∈
(𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹)) |
| 52 | 51 | 19.21bi 2190 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐹) → (𝑣 ∈
(𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹)) |
| 53 | 52 | con3d 152 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐹) → (¬ 𝑣 ∈ ran 𝐹 → ¬ 𝑣 ∈
(𝑅1‘(rank‘𝑠)))) |
| 54 | | rankon 9755 |
. . . . . . . . . . . 12
⊢
(rank‘𝑠)
∈ On |
| 55 | | vex 3454 |
. . . . . . . . . . . . 13
⊢ 𝑣 ∈ V |
| 56 | 55 | ssrankr1 9795 |
. . . . . . . . . . . 12
⊢
((rank‘𝑠)
∈ On → ((rank‘𝑠) ⊆ (rank‘𝑣) ↔ ¬ 𝑣 ∈
(𝑅1‘(rank‘𝑠)))) |
| 57 | 54, 56 | ax-mp 5 |
. . . . . . . . . . 11
⊢
((rank‘𝑠)
⊆ (rank‘𝑣)
↔ ¬ 𝑣 ∈
(𝑅1‘(rank‘𝑠))) |
| 58 | 53, 57 | imbitrrdi 252 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐹) → (¬ 𝑣 ∈ ran 𝐹 → (rank‘𝑠) ⊆ (rank‘𝑣))) |
| 59 | 58 | impancom 451 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → (𝑠 ∈ ran 𝐹 → (rank‘𝑠) ⊆ (rank‘𝑣))) |
| 60 | 59 | ralrimiv 3125 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣)) |
| 61 | | rankon 9755 |
. . . . . . . . 9
⊢
(rank‘𝑣)
∈ On |
| 62 | | sseq2 3976 |
. . . . . . . . . . 11
⊢ (𝑟 = (rank‘𝑣) → ((rank‘𝑠) ⊆ 𝑟 ↔ (rank‘𝑠) ⊆ (rank‘𝑣))) |
| 63 | 62 | ralbidv 3157 |
. . . . . . . . . 10
⊢ (𝑟 = (rank‘𝑣) → (∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟 ↔ ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣))) |
| 64 | 63 | rspcev 3591 |
. . . . . . . . 9
⊢
(((rank‘𝑣)
∈ On ∧ ∀𝑠
∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣)) → ∃𝑟 ∈ On ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟) |
| 65 | 61, 64 | mpan 690 |
. . . . . . . 8
⊢
(∀𝑠 ∈
ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣) → ∃𝑟 ∈ On ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟) |
| 66 | | bndrank 9801 |
. . . . . . . 8
⊢
(∃𝑟 ∈ On
∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟 → ran 𝐹 ∈ V) |
| 67 | 60, 65, 66 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → ran 𝐹 ∈ V) |
| 68 | 67 | expcom 413 |
. . . . . 6
⊢ (¬
𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V)) |
| 69 | 68 | exlimiv 1930 |
. . . . 5
⊢
(∃𝑣 ¬
𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V)) |
| 70 | 2, 69 | sylbir 235 |
. . . 4
⊢ (¬
∀𝑣 𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V)) |
| 71 | 1, 70 | sylnbi 330 |
. . 3
⊢ (¬
ran 𝐹 = V → (𝜑 → ran 𝐹 ∈ V)) |
| 72 | 71 | com12 32 |
. 2
⊢ (𝜑 → (¬ ran 𝐹 = V → ran 𝐹 ∈ V)) |
| 73 | 72 | con1d 145 |
1
⊢ (𝜑 → (¬ ran 𝐹 ∈ V → ran 𝐹 = V)) |