Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onvf1odlem4 Structured version   Visualization version   GIF version

Theorem onvf1odlem4 35150
Description: Lemma for onvf1od 35151. If the range of 𝐹 does not exist, then it must equal the universe. (Contributed by BTernaryTau, 4-Dec-2025.)
Hypotheses
Ref Expression
onvf1odlem4.1 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
onvf1odlem4.2 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
onvf1odlem4.3 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
onvf1odlem4.4 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
onvf1odlem4.5 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}
onvf1odlem4.6 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝑡)))
Assertion
Ref Expression
onvf1odlem4 (𝜑 → (¬ ran 𝐹 ∈ V → ran 𝐹 = V))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐺   𝑤,𝐺   𝑥,𝑤,𝑦   𝑡,𝐹,𝑧   𝜑,𝑡,𝑣   𝑢,𝐹,𝑣,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑢)   𝐵(𝑥,𝑦,𝑤,𝑣,𝑢,𝑡)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑡)   𝑀(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)

Proof of Theorem onvf1odlem4
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3446 . . . 4 (ran 𝐹 = V ↔ ∀𝑣 𝑣 ∈ ran 𝐹)
2 exnal 1828 . . . . 5 (∃𝑣 ¬ 𝑣 ∈ ran 𝐹 ↔ ¬ ∀𝑣 𝑣 ∈ ran 𝐹)
3 onvf1odlem4.4 . . . . . . . . . . . . . . . . . 18 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
43tfr1 8316 . . . . . . . . . . . . . . . . 17 𝐹 Fn On
5 fvelrnb 6882 . . . . . . . . . . . . . . . . 17 (𝐹 Fn On → (𝑠 ∈ ran 𝐹 ↔ ∃𝑡 ∈ On (𝐹𝑡) = 𝑠))
64, 5ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ran 𝐹 ↔ ∃𝑡 ∈ On (𝐹𝑡) = 𝑠)
7 onvf1odlem4.2 . . . . . . . . . . . . . . . . . . . . . 22 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
8 onvf1odlem4.3 . . . . . . . . . . . . . . . . . . . . . 22 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
9 onvf1odlem4.5 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}
10 onvf1odlem4.6 . . . . . . . . . . . . . . . . . . . . . 22 𝐶 = (𝐺‘((𝑅1𝐵) ∖ (𝐹𝑡)))
117, 8, 3, 9, 10onvf1odlem3 35149 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ On → (𝐹𝑡) = 𝐶)
1211adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ On) → (𝐹𝑡) = 𝐶)
13 fnfun 6581 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 Fn On → Fun 𝐹)
144, 13ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 Fun 𝐹
15 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑡 ∈ V
1615funimaex 6569 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝐹 → (𝐹𝑡) ∈ V)
1714, 16ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹𝑡) ∈ V
18 onvf1odlem4.1 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
1918, 9, 10onvf1odlem2 35148 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐹𝑡) ∈ V → 𝐶 ∈ ((𝑅1𝐵) ∖ (𝐹𝑡))))
2017, 19mpi 20 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐶 ∈ ((𝑅1𝐵) ∖ (𝐹𝑡)))
2120eldifad 3909 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ (𝑅1𝐵))
2221adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ On) → 𝐶 ∈ (𝑅1𝐵))
2312, 22eqeltrd 2831 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ On) → (𝐹𝑡) ∈ (𝑅1𝐵))
24 rankr1ai 9691 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑡) ∈ (𝑅1𝐵) → (rank‘(𝐹𝑡)) ∈ 𝐵)
25 onvf1odlem1 35147 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑡) ∈ V → ∃𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡))
2617, 25ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)
27 onintrab2 7730 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡) ↔ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)} ∈ On)
289eleq1i 2822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ On ↔ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)} ∈ On)
2927, 28bitr4i 278 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑢 ∈ On ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡) ↔ 𝐵 ∈ On)
3026, 29mpbi 230 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 ∈ On
3130oneli 6421 . . . . . . . . . . . . . . . . . . . . 21 ((rank‘(𝐹𝑡)) ∈ 𝐵 → (rank‘(𝐹𝑡)) ∈ On)
32 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = (rank‘(𝐹𝑡)) → (𝑅1𝑢) = (𝑅1‘(rank‘(𝐹𝑡))))
3332rexeqdv 3293 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = (rank‘(𝐹𝑡)) → (∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡) ↔ ∃𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡))) ¬ 𝑣 ∈ (𝐹𝑡)))
3433onnminsb 7732 . . . . . . . . . . . . . . . . . . . . . 22 ((rank‘(𝐹𝑡)) ∈ On → ((rank‘(𝐹𝑡)) ∈ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)} → ¬ ∃𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡))) ¬ 𝑣 ∈ (𝐹𝑡)))
359eleq2i 2823 . . . . . . . . . . . . . . . . . . . . . 22 ((rank‘(𝐹𝑡)) ∈ 𝐵 ↔ (rank‘(𝐹𝑡)) ∈ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)})
36 dfral2 3083 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡) ↔ ¬ ∃𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡))) ¬ 𝑣 ∈ (𝐹𝑡))
3734, 35, 363imtr4g 296 . . . . . . . . . . . . . . . . . . . . 21 ((rank‘(𝐹𝑡)) ∈ On → ((rank‘(𝐹𝑡)) ∈ 𝐵 → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡)))
3831, 37mpcom 38 . . . . . . . . . . . . . . . . . . . 20 ((rank‘(𝐹𝑡)) ∈ 𝐵 → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡))
39 imassrn 6019 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑡) ⊆ ran 𝐹
4039sseli 3925 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ (𝐹𝑡) → 𝑣 ∈ ran 𝐹)
4140ralimi 3069 . . . . . . . . . . . . . . . . . . . 20 (∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ (𝐹𝑡) → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹)
4238, 41syl 17 . . . . . . . . . . . . . . . . . . 19 ((rank‘(𝐹𝑡)) ∈ 𝐵 → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹)
4323, 24, 423syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ On) → ∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹)
44 2fveq3 6827 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑡) = 𝑠 → (𝑅1‘(rank‘(𝐹𝑡))) = (𝑅1‘(rank‘𝑠)))
4544raleqdv 3292 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑡) = 𝑠 → (∀𝑣 ∈ (𝑅1‘(rank‘(𝐹𝑡)))𝑣 ∈ ran 𝐹 ↔ ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
4643, 45syl5ibcom 245 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ On) → ((𝐹𝑡) = 𝑠 → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
4746rexlimdva 3133 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑡 ∈ On (𝐹𝑡) = 𝑠 → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
486, 47biimtrid 242 . . . . . . . . . . . . . . 15 (𝜑 → (𝑠 ∈ ran 𝐹 → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹))
4948imp 406 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ ran 𝐹) → ∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹)
50 df-ral 3048 . . . . . . . . . . . . . 14 (∀𝑣 ∈ (𝑅1‘(rank‘𝑠))𝑣 ∈ ran 𝐹 ↔ ∀𝑣(𝑣 ∈ (𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹))
5149, 50sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ ran 𝐹) → ∀𝑣(𝑣 ∈ (𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹))
525119.21bi 2192 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ran 𝐹) → (𝑣 ∈ (𝑅1‘(rank‘𝑠)) → 𝑣 ∈ ran 𝐹))
5352con3d 152 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ran 𝐹) → (¬ 𝑣 ∈ ran 𝐹 → ¬ 𝑣 ∈ (𝑅1‘(rank‘𝑠))))
54 rankon 9688 . . . . . . . . . . . 12 (rank‘𝑠) ∈ On
55 vex 3440 . . . . . . . . . . . . 13 𝑣 ∈ V
5655ssrankr1 9728 . . . . . . . . . . . 12 ((rank‘𝑠) ∈ On → ((rank‘𝑠) ⊆ (rank‘𝑣) ↔ ¬ 𝑣 ∈ (𝑅1‘(rank‘𝑠))))
5754, 56ax-mp 5 . . . . . . . . . . 11 ((rank‘𝑠) ⊆ (rank‘𝑣) ↔ ¬ 𝑣 ∈ (𝑅1‘(rank‘𝑠)))
5853, 57imbitrrdi 252 . . . . . . . . . 10 ((𝜑𝑠 ∈ ran 𝐹) → (¬ 𝑣 ∈ ran 𝐹 → (rank‘𝑠) ⊆ (rank‘𝑣)))
5958impancom 451 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → (𝑠 ∈ ran 𝐹 → (rank‘𝑠) ⊆ (rank‘𝑣)))
6059ralrimiv 3123 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣))
61 rankon 9688 . . . . . . . . 9 (rank‘𝑣) ∈ On
62 sseq2 3956 . . . . . . . . . . 11 (𝑟 = (rank‘𝑣) → ((rank‘𝑠) ⊆ 𝑟 ↔ (rank‘𝑠) ⊆ (rank‘𝑣)))
6362ralbidv 3155 . . . . . . . . . 10 (𝑟 = (rank‘𝑣) → (∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟 ↔ ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣)))
6463rspcev 3572 . . . . . . . . 9 (((rank‘𝑣) ∈ On ∧ ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣)) → ∃𝑟 ∈ On ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟)
6561, 64mpan 690 . . . . . . . 8 (∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ (rank‘𝑣) → ∃𝑟 ∈ On ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟)
66 bndrank 9734 . . . . . . . 8 (∃𝑟 ∈ On ∀𝑠 ∈ ran 𝐹(rank‘𝑠) ⊆ 𝑟 → ran 𝐹 ∈ V)
6760, 65, 663syl 18 . . . . . . 7 ((𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹) → ran 𝐹 ∈ V)
6867expcom 413 . . . . . 6 𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V))
6968exlimiv 1931 . . . . 5 (∃𝑣 ¬ 𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V))
702, 69sylbir 235 . . . 4 (¬ ∀𝑣 𝑣 ∈ ran 𝐹 → (𝜑 → ran 𝐹 ∈ V))
711, 70sylnbi 330 . . 3 (¬ ran 𝐹 = V → (𝜑 → ran 𝐹 ∈ V))
7271com12 32 . 2 (𝜑 → (¬ ran 𝐹 = V → ran 𝐹 ∈ V))
7372con1d 145 1 (𝜑 → (¬ ran 𝐹 ∈ V → ran 𝐹 = V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cdif 3894  wss 3897  c0 4280   cint 4895  cmpt 5170  ran crn 5615  cima 5617  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  cfv 6481  recscrecs 8290  𝑅1cr1 9655  rankcrnk 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9657  df-rank 9658
This theorem is referenced by:  onvf1od  35151
  Copyright terms: Public domain W3C validator