Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onvf1od Structured version   Visualization version   GIF version

Theorem onvf1od 35101
Description: If 𝐺 is a global choice function, then 𝐹 is a bijection from the ordinals to the universe. This is the ZFC version of (1 2) in https://tinyurl.com/hamkins-gblac. (Contributed by BTernaryTau, 5-Dec-2025.)
Hypotheses
Ref Expression
onvf1od.1 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
onvf1od.2 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
onvf1od.3 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
onvf1od.4 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
Assertion
Ref Expression
onvf1od (𝜑𝐹:On–1-1-onto→V)
Distinct variable groups:   𝑧,𝐺   𝑤,𝐺   𝑥,𝑤,𝑦   𝑧,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem onvf1od
Dummy variables 𝑡 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onvf1od.4 . . . . 5 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
21tfr1 8368 . . . 4 𝐹 Fn On
3 dffn2 6693 . . . 4 (𝐹 Fn On ↔ 𝐹:On⟶V)
42, 3mpbi 230 . . 3 𝐹:On⟶V
5 onvf1od.2 . . . . . . . 8 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
6 onvf1od.3 . . . . . . . 8 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
7 eqid 2730 . . . . . . . 8 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}
8 eqid 2730 . . . . . . . 8 (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))) = (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡)))
95, 6, 1, 7, 8onvf1odlem3 35099 . . . . . . 7 (𝑡 ∈ On → (𝐹𝑡) = (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))))
109adantl 481 . . . . . 6 ((𝜑𝑡 ∈ On) → (𝐹𝑡) = (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))))
11 fnfun 6621 . . . . . . . . . 10 (𝐹 Fn On → Fun 𝐹)
12 vex 3454 . . . . . . . . . . 11 𝑡 ∈ V
1312funimaex 6608 . . . . . . . . . 10 (Fun 𝐹 → (𝐹𝑡) ∈ V)
142, 11, 13mp2b 10 . . . . . . . . 9 (𝐹𝑡) ∈ V
15 onvf1od.1 . . . . . . . . . 10 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
1615, 7, 8onvf1odlem2 35098 . . . . . . . . 9 (𝜑 → ((𝐹𝑡) ∈ V → (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))) ∈ ((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))))
1714, 16mpi 20 . . . . . . . 8 (𝜑 → (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))) ∈ ((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡)))
1817eldifbd 3930 . . . . . . 7 (𝜑 → ¬ (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))) ∈ (𝐹𝑡))
1918adantr 480 . . . . . 6 ((𝜑𝑡 ∈ On) → ¬ (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))) ∈ (𝐹𝑡))
2010, 19eqneltrd 2849 . . . . 5 ((𝜑𝑡 ∈ On) → ¬ (𝐹𝑡) ∈ (𝐹𝑡))
2120ralrimiva 3126 . . . 4 (𝜑 → ∀𝑡 ∈ On ¬ (𝐹𝑡) ∈ (𝐹𝑡))
22 fvex 6874 . . . . . . 7 (𝐹𝑡) ∈ V
23 eldif 3927 . . . . . . 7 ((𝐹𝑡) ∈ (V ∖ (𝐹𝑡)) ↔ ((𝐹𝑡) ∈ V ∧ ¬ (𝐹𝑡) ∈ (𝐹𝑡)))
2422, 23mpbiran 709 . . . . . 6 ((𝐹𝑡) ∈ (V ∖ (𝐹𝑡)) ↔ ¬ (𝐹𝑡) ∈ (𝐹𝑡))
2524ralbii 3076 . . . . 5 (∀𝑡 ∈ On (𝐹𝑡) ∈ (V ∖ (𝐹𝑡)) ↔ ∀𝑡 ∈ On ¬ (𝐹𝑡) ∈ (𝐹𝑡))
262tz7.48-2 8413 . . . . 5 (∀𝑡 ∈ On (𝐹𝑡) ∈ (V ∖ (𝐹𝑡)) → Fun 𝐹)
2725, 26sylbir 235 . . . 4 (∀𝑡 ∈ On ¬ (𝐹𝑡) ∈ (𝐹𝑡) → Fun 𝐹)
2821, 27syl 17 . . 3 (𝜑 → Fun 𝐹)
29 df-f1 6519 . . . 4 (𝐹:On–1-1→V ↔ (𝐹:On⟶V ∧ Fun 𝐹))
3029biimpri 228 . . 3 ((𝐹:On⟶V ∧ Fun 𝐹) → 𝐹:On–1-1→V)
314, 28, 30sylancr 587 . 2 (𝜑𝐹:On–1-1→V)
32 onprc 7757 . . . 4 ¬ On ∈ V
33 f1f1orn 6814 . . . . . . 7 (𝐹:On–1-1→V → 𝐹:On–1-1-onto→ran 𝐹)
34 f1of1 6802 . . . . . . 7 (𝐹:On–1-1-onto→ran 𝐹𝐹:On–1-1→ran 𝐹)
3531, 33, 343syl 18 . . . . . 6 (𝜑𝐹:On–1-1→ran 𝐹)
36 f1dmex 7938 . . . . . 6 ((𝐹:On–1-1→ran 𝐹 ∧ ran 𝐹 ∈ V) → On ∈ V)
3735, 36sylan 580 . . . . 5 ((𝜑 ∧ ran 𝐹 ∈ V) → On ∈ V)
3837stoic1a 1772 . . . 4 ((𝜑 ∧ ¬ On ∈ V) → ¬ ran 𝐹 ∈ V)
3932, 38mpan2 691 . . 3 (𝜑 → ¬ ran 𝐹 ∈ V)
4015, 5, 6, 1, 7, 8onvf1odlem4 35100 . . 3 (𝜑 → (¬ ran 𝐹 ∈ V → ran 𝐹 = V))
4139, 40mpd 15 . 2 (𝜑 → ran 𝐹 = V)
42 dff1o5 6812 . 2 (𝐹:On–1-1-onto→V ↔ (𝐹:On–1-1→V ∧ ran 𝐹 = V))
4331, 41, 42sylanbrc 583 1 (𝜑𝐹:On–1-1-onto→V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  c0 4299   cint 4913  cmpt 5191  ccnv 5640  ran crn 5642  cima 5644  Oncon0 6335  Fun wfun 6508   Fn wfn 6509  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  recscrecs 8342  𝑅1cr1 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-r1 9724  df-rank 9725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator