| Step | Hyp | Ref
| Expression |
| 1 | | onvf1od.4 |
. . . . 5
⊢ 𝐹 = recs((𝑤 ∈ V ↦ 𝑁)) |
| 2 | 1 | tfr1 8368 |
. . . 4
⊢ 𝐹 Fn On |
| 3 | | dffn2 6693 |
. . . 4
⊢ (𝐹 Fn On ↔ 𝐹:On⟶V) |
| 4 | 2, 3 | mpbi 230 |
. . 3
⊢ 𝐹:On⟶V |
| 5 | | onvf1od.2 |
. . . . . . . 8
⊢ 𝑀 = ∩
{𝑥 ∈ On ∣
∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ ran 𝑤} |
| 6 | | onvf1od.3 |
. . . . . . . 8
⊢ 𝑁 = (𝐺‘((𝑅1‘𝑀) ∖ ran 𝑤)) |
| 7 | | eqid 2730 |
. . . . . . . 8
⊢ ∩ {𝑢
∈ On ∣ ∃𝑣
∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)} = ∩ {𝑢 ∈ On ∣ ∃𝑣 ∈
(𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)} |
| 8 | | eqid 2730 |
. . . . . . . 8
⊢ (𝐺‘((𝑅1‘∩ {𝑢
∈ On ∣ ∃𝑣
∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)}) ∖ (𝐹 “ 𝑡))) = (𝐺‘((𝑅1‘∩ {𝑢
∈ On ∣ ∃𝑣
∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)}) ∖ (𝐹 “ 𝑡))) |
| 9 | 5, 6, 1, 7, 8 | onvf1odlem3 35099 |
. . . . . . 7
⊢ (𝑡 ∈ On → (𝐹‘𝑡) = (𝐺‘((𝑅1‘∩ {𝑢
∈ On ∣ ∃𝑣
∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)}) ∖ (𝐹 “ 𝑡)))) |
| 10 | 9 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ On) → (𝐹‘𝑡) = (𝐺‘((𝑅1‘∩ {𝑢
∈ On ∣ ∃𝑣
∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)}) ∖ (𝐹 “ 𝑡)))) |
| 11 | | fnfun 6621 |
. . . . . . . . . 10
⊢ (𝐹 Fn On → Fun 𝐹) |
| 12 | | vex 3454 |
. . . . . . . . . . 11
⊢ 𝑡 ∈ V |
| 13 | 12 | funimaex 6608 |
. . . . . . . . . 10
⊢ (Fun
𝐹 → (𝐹 “ 𝑡) ∈ V) |
| 14 | 2, 11, 13 | mp2b 10 |
. . . . . . . . 9
⊢ (𝐹 “ 𝑡) ∈ V |
| 15 | | onvf1od.1 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧)) |
| 16 | 15, 7, 8 | onvf1odlem2 35098 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹 “ 𝑡) ∈ V → (𝐺‘((𝑅1‘∩ {𝑢
∈ On ∣ ∃𝑣
∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)}) ∖ (𝐹 “ 𝑡))) ∈
((𝑅1‘∩ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)}) ∖ (𝐹 “ 𝑡)))) |
| 17 | 14, 16 | mpi 20 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘((𝑅1‘∩ {𝑢
∈ On ∣ ∃𝑣
∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)}) ∖ (𝐹 “ 𝑡))) ∈
((𝑅1‘∩ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)}) ∖ (𝐹 “ 𝑡))) |
| 18 | 17 | eldifbd 3930 |
. . . . . . 7
⊢ (𝜑 → ¬ (𝐺‘((𝑅1‘∩ {𝑢
∈ On ∣ ∃𝑣
∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)}) ∖ (𝐹 “ 𝑡))) ∈ (𝐹 “ 𝑡)) |
| 19 | 18 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ On) → ¬ (𝐺‘((𝑅1‘∩ {𝑢
∈ On ∣ ∃𝑣
∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)}) ∖ (𝐹 “ 𝑡))) ∈ (𝐹 “ 𝑡)) |
| 20 | 10, 19 | eqneltrd 2849 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ On) → ¬ (𝐹‘𝑡) ∈ (𝐹 “ 𝑡)) |
| 21 | 20 | ralrimiva 3126 |
. . . 4
⊢ (𝜑 → ∀𝑡 ∈ On ¬ (𝐹‘𝑡) ∈ (𝐹 “ 𝑡)) |
| 22 | | fvex 6874 |
. . . . . . 7
⊢ (𝐹‘𝑡) ∈ V |
| 23 | | eldif 3927 |
. . . . . . 7
⊢ ((𝐹‘𝑡) ∈ (V ∖ (𝐹 “ 𝑡)) ↔ ((𝐹‘𝑡) ∈ V ∧ ¬ (𝐹‘𝑡) ∈ (𝐹 “ 𝑡))) |
| 24 | 22, 23 | mpbiran 709 |
. . . . . 6
⊢ ((𝐹‘𝑡) ∈ (V ∖ (𝐹 “ 𝑡)) ↔ ¬ (𝐹‘𝑡) ∈ (𝐹 “ 𝑡)) |
| 25 | 24 | ralbii 3076 |
. . . . 5
⊢
(∀𝑡 ∈ On
(𝐹‘𝑡) ∈ (V ∖ (𝐹 “ 𝑡)) ↔ ∀𝑡 ∈ On ¬ (𝐹‘𝑡) ∈ (𝐹 “ 𝑡)) |
| 26 | 2 | tz7.48-2 8413 |
. . . . 5
⊢
(∀𝑡 ∈ On
(𝐹‘𝑡) ∈ (V ∖ (𝐹 “ 𝑡)) → Fun ◡𝐹) |
| 27 | 25, 26 | sylbir 235 |
. . . 4
⊢
(∀𝑡 ∈ On
¬ (𝐹‘𝑡) ∈ (𝐹 “ 𝑡) → Fun ◡𝐹) |
| 28 | 21, 27 | syl 17 |
. . 3
⊢ (𝜑 → Fun ◡𝐹) |
| 29 | | df-f1 6519 |
. . . 4
⊢ (𝐹:On–1-1→V ↔ (𝐹:On⟶V ∧ Fun ◡𝐹)) |
| 30 | 29 | biimpri 228 |
. . 3
⊢ ((𝐹:On⟶V ∧ Fun ◡𝐹) → 𝐹:On–1-1→V) |
| 31 | 4, 28, 30 | sylancr 587 |
. 2
⊢ (𝜑 → 𝐹:On–1-1→V) |
| 32 | | onprc 7757 |
. . . 4
⊢ ¬ On
∈ V |
| 33 | | f1f1orn 6814 |
. . . . . . 7
⊢ (𝐹:On–1-1→V → 𝐹:On–1-1-onto→ran
𝐹) |
| 34 | | f1of1 6802 |
. . . . . . 7
⊢ (𝐹:On–1-1-onto→ran
𝐹 → 𝐹:On–1-1→ran 𝐹) |
| 35 | 31, 33, 34 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 𝐹:On–1-1→ran 𝐹) |
| 36 | | f1dmex 7938 |
. . . . . 6
⊢ ((𝐹:On–1-1→ran 𝐹 ∧ ran 𝐹 ∈ V) → On ∈
V) |
| 37 | 35, 36 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ ran 𝐹 ∈ V) → On ∈
V) |
| 38 | 37 | stoic1a 1772 |
. . . 4
⊢ ((𝜑 ∧ ¬ On ∈ V) →
¬ ran 𝐹 ∈
V) |
| 39 | 32, 38 | mpan2 691 |
. . 3
⊢ (𝜑 → ¬ ran 𝐹 ∈ V) |
| 40 | 15, 5, 6, 1, 7, 8 | onvf1odlem4 35100 |
. . 3
⊢ (𝜑 → (¬ ran 𝐹 ∈ V → ran 𝐹 = V)) |
| 41 | 39, 40 | mpd 15 |
. 2
⊢ (𝜑 → ran 𝐹 = V) |
| 42 | | dff1o5 6812 |
. 2
⊢ (𝐹:On–1-1-onto→V
↔ (𝐹:On–1-1→V ∧ ran 𝐹 = V)) |
| 43 | 31, 41, 42 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐹:On–1-1-onto→V) |