Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onvf1od Structured version   Visualization version   GIF version

Theorem onvf1od 35090
Description: If 𝐺 is a global choice function, then 𝐹 is a bijection from the ordinals to the universe. This is the ZFC version of (1 2) in https://tinyurl.com/hamkins-gblac. (Contributed by BTernaryTau, 5-Dec-2025.)
Hypotheses
Ref Expression
onvf1od.1 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
onvf1od.2 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
onvf1od.3 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
onvf1od.4 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
Assertion
Ref Expression
onvf1od (𝜑𝐹:On–1-1-onto→V)
Distinct variable groups:   𝑧,𝐺   𝑤,𝐺   𝑥,𝑤,𝑦   𝑧,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem onvf1od
Dummy variables 𝑡 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onvf1od.4 . . . . 5 𝐹 = recs((𝑤 ∈ V ↦ 𝑁))
21tfr1 8319 . . . 4 𝐹 Fn On
3 dffn2 6654 . . . 4 (𝐹 Fn On ↔ 𝐹:On⟶V)
42, 3mpbi 230 . . 3 𝐹:On⟶V
5 onvf1od.2 . . . . . . . 8 𝑀 = {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1𝑥) ¬ 𝑦 ∈ ran 𝑤}
6 onvf1od.3 . . . . . . . 8 𝑁 = (𝐺‘((𝑅1𝑀) ∖ ran 𝑤))
7 eqid 2729 . . . . . . . 8 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)} = {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}
8 eqid 2729 . . . . . . . 8 (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))) = (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡)))
95, 6, 1, 7, 8onvf1odlem3 35088 . . . . . . 7 (𝑡 ∈ On → (𝐹𝑡) = (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))))
109adantl 481 . . . . . 6 ((𝜑𝑡 ∈ On) → (𝐹𝑡) = (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))))
11 fnfun 6582 . . . . . . . . . 10 (𝐹 Fn On → Fun 𝐹)
12 vex 3440 . . . . . . . . . . 11 𝑡 ∈ V
1312funimaex 6570 . . . . . . . . . 10 (Fun 𝐹 → (𝐹𝑡) ∈ V)
142, 11, 13mp2b 10 . . . . . . . . 9 (𝐹𝑡) ∈ V
15 onvf1od.1 . . . . . . . . . 10 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
1615, 7, 8onvf1odlem2 35087 . . . . . . . . 9 (𝜑 → ((𝐹𝑡) ∈ V → (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))) ∈ ((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))))
1714, 16mpi 20 . . . . . . . 8 (𝜑 → (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))) ∈ ((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡)))
1817eldifbd 3916 . . . . . . 7 (𝜑 → ¬ (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))) ∈ (𝐹𝑡))
1918adantr 480 . . . . . 6 ((𝜑𝑡 ∈ On) → ¬ (𝐺‘((𝑅1 {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1𝑢) ¬ 𝑣 ∈ (𝐹𝑡)}) ∖ (𝐹𝑡))) ∈ (𝐹𝑡))
2010, 19eqneltrd 2848 . . . . 5 ((𝜑𝑡 ∈ On) → ¬ (𝐹𝑡) ∈ (𝐹𝑡))
2120ralrimiva 3121 . . . 4 (𝜑 → ∀𝑡 ∈ On ¬ (𝐹𝑡) ∈ (𝐹𝑡))
22 fvex 6835 . . . . . . 7 (𝐹𝑡) ∈ V
23 eldif 3913 . . . . . . 7 ((𝐹𝑡) ∈ (V ∖ (𝐹𝑡)) ↔ ((𝐹𝑡) ∈ V ∧ ¬ (𝐹𝑡) ∈ (𝐹𝑡)))
2422, 23mpbiran 709 . . . . . 6 ((𝐹𝑡) ∈ (V ∖ (𝐹𝑡)) ↔ ¬ (𝐹𝑡) ∈ (𝐹𝑡))
2524ralbii 3075 . . . . 5 (∀𝑡 ∈ On (𝐹𝑡) ∈ (V ∖ (𝐹𝑡)) ↔ ∀𝑡 ∈ On ¬ (𝐹𝑡) ∈ (𝐹𝑡))
262tz7.48-2 8364 . . . . 5 (∀𝑡 ∈ On (𝐹𝑡) ∈ (V ∖ (𝐹𝑡)) → Fun 𝐹)
2725, 26sylbir 235 . . . 4 (∀𝑡 ∈ On ¬ (𝐹𝑡) ∈ (𝐹𝑡) → Fun 𝐹)
2821, 27syl 17 . . 3 (𝜑 → Fun 𝐹)
29 df-f1 6487 . . . 4 (𝐹:On–1-1→V ↔ (𝐹:On⟶V ∧ Fun 𝐹))
3029biimpri 228 . . 3 ((𝐹:On⟶V ∧ Fun 𝐹) → 𝐹:On–1-1→V)
314, 28, 30sylancr 587 . 2 (𝜑𝐹:On–1-1→V)
32 onprc 7714 . . . 4 ¬ On ∈ V
33 f1f1orn 6775 . . . . . . 7 (𝐹:On–1-1→V → 𝐹:On–1-1-onto→ran 𝐹)
34 f1of1 6763 . . . . . . 7 (𝐹:On–1-1-onto→ran 𝐹𝐹:On–1-1→ran 𝐹)
3531, 33, 343syl 18 . . . . . 6 (𝜑𝐹:On–1-1→ran 𝐹)
36 f1dmex 7892 . . . . . 6 ((𝐹:On–1-1→ran 𝐹 ∧ ran 𝐹 ∈ V) → On ∈ V)
3735, 36sylan 580 . . . . 5 ((𝜑 ∧ ran 𝐹 ∈ V) → On ∈ V)
3837stoic1a 1772 . . . 4 ((𝜑 ∧ ¬ On ∈ V) → ¬ ran 𝐹 ∈ V)
3932, 38mpan2 691 . . 3 (𝜑 → ¬ ran 𝐹 ∈ V)
4015, 5, 6, 1, 7, 8onvf1odlem4 35089 . . 3 (𝜑 → (¬ ran 𝐹 ∈ V → ran 𝐹 = V))
4139, 40mpd 15 . 2 (𝜑 → ran 𝐹 = V)
42 dff1o5 6773 . 2 (𝐹:On–1-1-onto→V ↔ (𝐹:On–1-1→V ∧ ran 𝐹 = V))
4331, 41, 42sylanbrc 583 1 (𝜑𝐹:On–1-1-onto→V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  c0 4284   cint 4896  cmpt 5173  ccnv 5618  ran crn 5620  cima 5622  Oncon0 6307  Fun wfun 6476   Fn wfn 6477  wf 6478  1-1wf1 6479  1-1-ontowf1o 6481  cfv 6482  recscrecs 8293  𝑅1cr1 9658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660  df-rank 9661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator