MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat0dimcrng Structured version   Visualization version   GIF version

Theorem mat0dimcrng 22476
Description: The algebra of matrices with dimension 0 (over an arbitrary ring!) is a commutative ring. (Contributed by AV, 10-Aug-2019.)
Hypothesis
Ref Expression
mat0dim.a 𝐴 = (∅ Mat 𝑅)
Assertion
Ref Expression
mat0dimcrng (𝑅 ∈ Ring → 𝐴 ∈ CRing)

Proof of Theorem mat0dimcrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0fi 9082 . . 3 ∅ ∈ Fin
2 mat0dim.a . . . 4 𝐴 = (∅ Mat 𝑅)
32matring 22449 . . 3 ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
41, 3mpan 690 . 2 (𝑅 ∈ Ring → 𝐴 ∈ Ring)
5 mat0dimbas0 22472 . . 3 (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅})
62eqcomi 2746 . . . . . 6 (∅ Mat 𝑅) = 𝐴
76fveq2i 6909 . . . . 5 (Base‘(∅ Mat 𝑅)) = (Base‘𝐴)
87eqeq1i 2742 . . . 4 ((Base‘(∅ Mat 𝑅)) = {∅} ↔ (Base‘𝐴) = {∅})
9 eqidd 2738 . . . . . . 7 (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → (∅(.r𝐴)∅) = (∅(.r𝐴)∅))
10 0ex 5307 . . . . . . . . 9 ∅ ∈ V
11 oveq1 7438 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥(.r𝐴)𝑦) = (∅(.r𝐴)𝑦))
12 oveq2 7439 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑦(.r𝐴)𝑥) = (𝑦(.r𝐴)∅))
1311, 12eqeq12d 2753 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ (∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅)))
1413ralbidv 3178 . . . . . . . . 9 (𝑥 = ∅ → (∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅)))
1510, 14ralsn 4681 . . . . . . . 8 (∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅))
16 oveq2 7439 . . . . . . . . . 10 (𝑦 = ∅ → (∅(.r𝐴)𝑦) = (∅(.r𝐴)∅))
17 oveq1 7438 . . . . . . . . . 10 (𝑦 = ∅ → (𝑦(.r𝐴)∅) = (∅(.r𝐴)∅))
1816, 17eqeq12d 2753 . . . . . . . . 9 (𝑦 = ∅ → ((∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅) ↔ (∅(.r𝐴)∅) = (∅(.r𝐴)∅)))
1910, 18ralsn 4681 . . . . . . . 8 (∀𝑦 ∈ {∅} (∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅) ↔ (∅(.r𝐴)∅) = (∅(.r𝐴)∅))
2015, 19bitri 275 . . . . . . 7 (∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ (∅(.r𝐴)∅) = (∅(.r𝐴)∅))
219, 20sylibr 234 . . . . . 6 (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
22 raleq 3323 . . . . . . . 8 ((Base‘𝐴) = {∅} → (∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
2322raleqbi1dv 3338 . . . . . . 7 ((Base‘𝐴) = {∅} → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
2423adantr 480 . . . . . 6 (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
2521, 24mpbird 257 . . . . 5 (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
2625ex 412 . . . 4 ((Base‘𝐴) = {∅} → (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
278, 26sylbi 217 . . 3 ((Base‘(∅ Mat 𝑅)) = {∅} → (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
285, 27mpcom 38 . 2 (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
29 eqid 2737 . . 3 (Base‘𝐴) = (Base‘𝐴)
30 eqid 2737 . . 3 (.r𝐴) = (.r𝐴)
3129, 30iscrng2 20249 . 2 (𝐴 ∈ CRing ↔ (𝐴 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
324, 28, 31sylanbrc 583 1 (𝑅 ∈ Ring → 𝐴 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  c0 4333  {csn 4626  cfv 6561  (class class class)co 7431  Fincfn 8985  Basecbs 17247  .rcmulr 17298  Ringcrg 20230  CRingccrg 20231   Mat cmat 22411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-subrg 20570  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-dsmm 21752  df-frlm 21767  df-mamu 22395  df-mat 22412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator