| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat0dimcrng | Structured version Visualization version GIF version | ||
| Description: The algebra of matrices with dimension 0 (over an arbitrary ring!) is a commutative ring. (Contributed by AV, 10-Aug-2019.) |
| Ref | Expression |
|---|---|
| mat0dim.a | ⊢ 𝐴 = (∅ Mat 𝑅) |
| Ref | Expression |
|---|---|
| mat0dimcrng | ⊢ (𝑅 ∈ Ring → 𝐴 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0fi 9082 | . . 3 ⊢ ∅ ∈ Fin | |
| 2 | mat0dim.a | . . . 4 ⊢ 𝐴 = (∅ Mat 𝑅) | |
| 3 | 2 | matring 22449 | . . 3 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 4 | 1, 3 | mpan 690 | . 2 ⊢ (𝑅 ∈ Ring → 𝐴 ∈ Ring) |
| 5 | mat0dimbas0 22472 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅}) | |
| 6 | 2 | eqcomi 2746 | . . . . . 6 ⊢ (∅ Mat 𝑅) = 𝐴 |
| 7 | 6 | fveq2i 6909 | . . . . 5 ⊢ (Base‘(∅ Mat 𝑅)) = (Base‘𝐴) |
| 8 | 7 | eqeq1i 2742 | . . . 4 ⊢ ((Base‘(∅ Mat 𝑅)) = {∅} ↔ (Base‘𝐴) = {∅}) |
| 9 | eqidd 2738 | . . . . . . 7 ⊢ (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → (∅(.r‘𝐴)∅) = (∅(.r‘𝐴)∅)) | |
| 10 | 0ex 5307 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
| 11 | oveq1 7438 | . . . . . . . . . . 11 ⊢ (𝑥 = ∅ → (𝑥(.r‘𝐴)𝑦) = (∅(.r‘𝐴)𝑦)) | |
| 12 | oveq2 7439 | . . . . . . . . . . 11 ⊢ (𝑥 = ∅ → (𝑦(.r‘𝐴)𝑥) = (𝑦(.r‘𝐴)∅)) | |
| 13 | 11, 12 | eqeq12d 2753 | . . . . . . . . . 10 ⊢ (𝑥 = ∅ → ((𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ (∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅))) |
| 14 | 13 | ralbidv 3178 | . . . . . . . . 9 ⊢ (𝑥 = ∅ → (∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅))) |
| 15 | 10, 14 | ralsn 4681 | . . . . . . . 8 ⊢ (∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅)) |
| 16 | oveq2 7439 | . . . . . . . . . 10 ⊢ (𝑦 = ∅ → (∅(.r‘𝐴)𝑦) = (∅(.r‘𝐴)∅)) | |
| 17 | oveq1 7438 | . . . . . . . . . 10 ⊢ (𝑦 = ∅ → (𝑦(.r‘𝐴)∅) = (∅(.r‘𝐴)∅)) | |
| 18 | 16, 17 | eqeq12d 2753 | . . . . . . . . 9 ⊢ (𝑦 = ∅ → ((∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅) ↔ (∅(.r‘𝐴)∅) = (∅(.r‘𝐴)∅))) |
| 19 | 10, 18 | ralsn 4681 | . . . . . . . 8 ⊢ (∀𝑦 ∈ {∅} (∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅) ↔ (∅(.r‘𝐴)∅) = (∅(.r‘𝐴)∅)) |
| 20 | 15, 19 | bitri 275 | . . . . . . 7 ⊢ (∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ (∅(.r‘𝐴)∅) = (∅(.r‘𝐴)∅)) |
| 21 | 9, 20 | sylibr 234 | . . . . . 6 ⊢ (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥)) |
| 22 | raleq 3323 | . . . . . . . 8 ⊢ ((Base‘𝐴) = {∅} → (∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) | |
| 23 | 22 | raleqbi1dv 3338 | . . . . . . 7 ⊢ ((Base‘𝐴) = {∅} → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
| 24 | 23 | adantr 480 | . . . . . 6 ⊢ (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
| 25 | 21, 24 | mpbird 257 | . . . . 5 ⊢ (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥)) |
| 26 | 25 | ex 412 | . . . 4 ⊢ ((Base‘𝐴) = {∅} → (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
| 27 | 8, 26 | sylbi 217 | . . 3 ⊢ ((Base‘(∅ Mat 𝑅)) = {∅} → (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
| 28 | 5, 27 | mpcom 38 | . 2 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥)) |
| 29 | eqid 2737 | . . 3 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 30 | eqid 2737 | . . 3 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
| 31 | 29, 30 | iscrng2 20249 | . 2 ⊢ (𝐴 ∈ CRing ↔ (𝐴 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
| 32 | 4, 28, 31 | sylanbrc 583 | 1 ⊢ (𝑅 ∈ Ring → 𝐴 ∈ CRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∅c0 4333 {csn 4626 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 Basecbs 17247 .rcmulr 17298 Ringcrg 20230 CRingccrg 20231 Mat cmat 22411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-ot 4635 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-subrg 20570 df-lmod 20860 df-lss 20930 df-sra 21172 df-rgmod 21173 df-dsmm 21752 df-frlm 21767 df-mamu 22395 df-mat 22412 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |