| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat0dimcrng | Structured version Visualization version GIF version | ||
| Description: The algebra of matrices with dimension 0 (over an arbitrary ring!) is a commutative ring. (Contributed by AV, 10-Aug-2019.) |
| Ref | Expression |
|---|---|
| mat0dim.a | ⊢ 𝐴 = (∅ Mat 𝑅) |
| Ref | Expression |
|---|---|
| mat0dimcrng | ⊢ (𝑅 ∈ Ring → 𝐴 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0fi 8964 | . . 3 ⊢ ∅ ∈ Fin | |
| 2 | mat0dim.a | . . . 4 ⊢ 𝐴 = (∅ Mat 𝑅) | |
| 3 | 2 | matring 22358 | . . 3 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 4 | 1, 3 | mpan 690 | . 2 ⊢ (𝑅 ∈ Ring → 𝐴 ∈ Ring) |
| 5 | mat0dimbas0 22381 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅}) | |
| 6 | 2 | eqcomi 2740 | . . . . . 6 ⊢ (∅ Mat 𝑅) = 𝐴 |
| 7 | 6 | fveq2i 6825 | . . . . 5 ⊢ (Base‘(∅ Mat 𝑅)) = (Base‘𝐴) |
| 8 | 7 | eqeq1i 2736 | . . . 4 ⊢ ((Base‘(∅ Mat 𝑅)) = {∅} ↔ (Base‘𝐴) = {∅}) |
| 9 | eqidd 2732 | . . . . . . 7 ⊢ (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → (∅(.r‘𝐴)∅) = (∅(.r‘𝐴)∅)) | |
| 10 | 0ex 5243 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
| 11 | oveq1 7353 | . . . . . . . . . . 11 ⊢ (𝑥 = ∅ → (𝑥(.r‘𝐴)𝑦) = (∅(.r‘𝐴)𝑦)) | |
| 12 | oveq2 7354 | . . . . . . . . . . 11 ⊢ (𝑥 = ∅ → (𝑦(.r‘𝐴)𝑥) = (𝑦(.r‘𝐴)∅)) | |
| 13 | 11, 12 | eqeq12d 2747 | . . . . . . . . . 10 ⊢ (𝑥 = ∅ → ((𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ (∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅))) |
| 14 | 13 | ralbidv 3155 | . . . . . . . . 9 ⊢ (𝑥 = ∅ → (∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅))) |
| 15 | 10, 14 | ralsn 4631 | . . . . . . . 8 ⊢ (∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅)) |
| 16 | oveq2 7354 | . . . . . . . . . 10 ⊢ (𝑦 = ∅ → (∅(.r‘𝐴)𝑦) = (∅(.r‘𝐴)∅)) | |
| 17 | oveq1 7353 | . . . . . . . . . 10 ⊢ (𝑦 = ∅ → (𝑦(.r‘𝐴)∅) = (∅(.r‘𝐴)∅)) | |
| 18 | 16, 17 | eqeq12d 2747 | . . . . . . . . 9 ⊢ (𝑦 = ∅ → ((∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅) ↔ (∅(.r‘𝐴)∅) = (∅(.r‘𝐴)∅))) |
| 19 | 10, 18 | ralsn 4631 | . . . . . . . 8 ⊢ (∀𝑦 ∈ {∅} (∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅) ↔ (∅(.r‘𝐴)∅) = (∅(.r‘𝐴)∅)) |
| 20 | 15, 19 | bitri 275 | . . . . . . 7 ⊢ (∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ (∅(.r‘𝐴)∅) = (∅(.r‘𝐴)∅)) |
| 21 | 9, 20 | sylibr 234 | . . . . . 6 ⊢ (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥)) |
| 22 | raleq 3289 | . . . . . . . 8 ⊢ ((Base‘𝐴) = {∅} → (∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) | |
| 23 | 22 | raleqbi1dv 3304 | . . . . . . 7 ⊢ ((Base‘𝐴) = {∅} → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
| 24 | 23 | adantr 480 | . . . . . 6 ⊢ (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
| 25 | 21, 24 | mpbird 257 | . . . . 5 ⊢ (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥)) |
| 26 | 25 | ex 412 | . . . 4 ⊢ ((Base‘𝐴) = {∅} → (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
| 27 | 8, 26 | sylbi 217 | . . 3 ⊢ ((Base‘(∅ Mat 𝑅)) = {∅} → (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
| 28 | 5, 27 | mpcom 38 | . 2 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥)) |
| 29 | eqid 2731 | . . 3 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 30 | eqid 2731 | . . 3 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
| 31 | 29, 30 | iscrng2 20170 | . 2 ⊢ (𝐴 ∈ CRing ↔ (𝐴 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
| 32 | 4, 28, 31 | sylanbrc 583 | 1 ⊢ (𝑅 ∈ Ring → 𝐴 ∈ CRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∅c0 4280 {csn 4573 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 Basecbs 17120 .rcmulr 17162 Ringcrg 20151 CRingccrg 20152 Mat cmat 22322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-subrg 20485 df-lmod 20795 df-lss 20865 df-sra 21107 df-rgmod 21108 df-dsmm 21669 df-frlm 21684 df-mamu 22306 df-mat 22323 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |