MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat0dimcrng Structured version   Visualization version   GIF version

Theorem mat0dimcrng 22390
Description: The algebra of matrices with dimension 0 (over an arbitrary ring!) is a commutative ring. (Contributed by AV, 10-Aug-2019.)
Hypothesis
Ref Expression
mat0dim.a 𝐴 = (∅ Mat 𝑅)
Assertion
Ref Expression
mat0dimcrng (𝑅 ∈ Ring → 𝐴 ∈ CRing)

Proof of Theorem mat0dimcrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0fi 8990 . . 3 ∅ ∈ Fin
2 mat0dim.a . . . 4 𝐴 = (∅ Mat 𝑅)
32matring 22363 . . 3 ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
41, 3mpan 690 . 2 (𝑅 ∈ Ring → 𝐴 ∈ Ring)
5 mat0dimbas0 22386 . . 3 (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅})
62eqcomi 2738 . . . . . 6 (∅ Mat 𝑅) = 𝐴
76fveq2i 6843 . . . . 5 (Base‘(∅ Mat 𝑅)) = (Base‘𝐴)
87eqeq1i 2734 . . . 4 ((Base‘(∅ Mat 𝑅)) = {∅} ↔ (Base‘𝐴) = {∅})
9 eqidd 2730 . . . . . . 7 (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → (∅(.r𝐴)∅) = (∅(.r𝐴)∅))
10 0ex 5257 . . . . . . . . 9 ∅ ∈ V
11 oveq1 7376 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥(.r𝐴)𝑦) = (∅(.r𝐴)𝑦))
12 oveq2 7377 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑦(.r𝐴)𝑥) = (𝑦(.r𝐴)∅))
1311, 12eqeq12d 2745 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ (∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅)))
1413ralbidv 3156 . . . . . . . . 9 (𝑥 = ∅ → (∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅)))
1510, 14ralsn 4641 . . . . . . . 8 (∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅))
16 oveq2 7377 . . . . . . . . . 10 (𝑦 = ∅ → (∅(.r𝐴)𝑦) = (∅(.r𝐴)∅))
17 oveq1 7376 . . . . . . . . . 10 (𝑦 = ∅ → (𝑦(.r𝐴)∅) = (∅(.r𝐴)∅))
1816, 17eqeq12d 2745 . . . . . . . . 9 (𝑦 = ∅ → ((∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅) ↔ (∅(.r𝐴)∅) = (∅(.r𝐴)∅)))
1910, 18ralsn 4641 . . . . . . . 8 (∀𝑦 ∈ {∅} (∅(.r𝐴)𝑦) = (𝑦(.r𝐴)∅) ↔ (∅(.r𝐴)∅) = (∅(.r𝐴)∅))
2015, 19bitri 275 . . . . . . 7 (∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ (∅(.r𝐴)∅) = (∅(.r𝐴)∅))
219, 20sylibr 234 . . . . . 6 (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
22 raleq 3293 . . . . . . . 8 ((Base‘𝐴) = {∅} → (∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
2322raleqbi1dv 3308 . . . . . . 7 ((Base‘𝐴) = {∅} → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
2423adantr 480 . . . . . 6 (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥) ↔ ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
2521, 24mpbird 257 . . . . 5 (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
2625ex 412 . . . 4 ((Base‘𝐴) = {∅} → (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
278, 26sylbi 217 . . 3 ((Base‘(∅ Mat 𝑅)) = {∅} → (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
285, 27mpcom 38 . 2 (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
29 eqid 2729 . . 3 (Base‘𝐴) = (Base‘𝐴)
30 eqid 2729 . . 3 (.r𝐴) = (.r𝐴)
3129, 30iscrng2 20172 . 2 (𝐴 ∈ CRing ↔ (𝐴 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
324, 28, 31sylanbrc 583 1 (𝑅 ∈ Ring → 𝐴 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  c0 4292  {csn 4585  cfv 6499  (class class class)co 7369  Fincfn 8895  Basecbs 17155  .rcmulr 17197  Ringcrg 20153  CRingccrg 20154   Mat cmat 22327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrg 20490  df-lmod 20800  df-lss 20870  df-sra 21112  df-rgmod 21113  df-dsmm 21674  df-frlm 21689  df-mamu 22311  df-mat 22328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator