![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > recbothd | Structured version Visualization version GIF version |
Description: Take reciprocal on both sides. (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
recbothd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
recbothd.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
recbothd.3 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
recbothd.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
recbothd.5 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
recbothd.6 | ⊢ (𝜑 → 𝐶 ≠ 0) |
recbothd.7 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
recbothd.8 | ⊢ (𝜑 → 𝐷 ≠ 0) |
Ref | Expression |
---|---|
recbothd | ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recbothd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | recbothd.3 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | recbothd.4 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | 1, 2, 3 | divcld 12018 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℂ) |
5 | recbothd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0) | |
6 | 1, 2, 5, 3 | divne0d 12034 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
7 | 4, 6 | jca 510 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0)) |
8 | recbothd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
9 | recbothd.7 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
10 | recbothd.8 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ≠ 0) | |
11 | 8, 9, 10 | divcld 12018 | . . . . . 6 ⊢ (𝜑 → (𝐶 / 𝐷) ∈ ℂ) |
12 | recbothd.6 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≠ 0) | |
13 | 8, 9, 12, 10 | divne0d 12034 | . . . . . 6 ⊢ (𝜑 → (𝐶 / 𝐷) ≠ 0) |
14 | 11, 13 | jca 510 | . . . . 5 ⊢ (𝜑 → ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)) |
15 | 7, 14 | jca 510 | . . . 4 ⊢ (𝜑 → (((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0) ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0))) |
16 | rec11 11940 | . . . 4 ⊢ ((((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0) ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)) → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐴 / 𝐵) = (𝐶 / 𝐷))) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐴 / 𝐵) = (𝐶 / 𝐷))) |
18 | 17 | bicomd 222 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)))) |
19 | 1, 2, 5, 3 | recdivd 12035 | . . 3 ⊢ (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) |
20 | 8, 9, 12, 10 | recdivd 12035 | . . 3 ⊢ (𝜑 → (1 / (𝐶 / 𝐷)) = (𝐷 / 𝐶)) |
21 | 19, 20 | eqeq12d 2741 | . 2 ⊢ (𝜑 → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶))) |
22 | 18, 21 | bitrd 278 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 (class class class)co 7414 ℂcc 11134 0cc0 11136 1c1 11137 / cdiv 11899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5568 df-po 5582 df-so 5583 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 |
This theorem is referenced by: lcmineqlem11 41538 |
Copyright terms: Public domain | W3C validator |