Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  recbothd Structured version   Visualization version   GIF version

Theorem recbothd 39735
Description: Take reciprocal on both sides. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
recbothd.1 (𝜑𝐴 ∈ ℂ)
recbothd.2 (𝜑𝐴 ≠ 0)
recbothd.3 (𝜑𝐵 ∈ ℂ)
recbothd.4 (𝜑𝐵 ≠ 0)
recbothd.5 (𝜑𝐶 ∈ ℂ)
recbothd.6 (𝜑𝐶 ≠ 0)
recbothd.7 (𝜑𝐷 ∈ ℂ)
recbothd.8 (𝜑𝐷 ≠ 0)
Assertion
Ref Expression
recbothd (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶)))

Proof of Theorem recbothd
StepHypRef Expression
1 recbothd.1 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
2 recbothd.3 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
3 recbothd.4 . . . . . . 7 (𝜑𝐵 ≠ 0)
41, 2, 3divcld 11608 . . . . . 6 (𝜑 → (𝐴 / 𝐵) ∈ ℂ)
5 recbothd.2 . . . . . . 7 (𝜑𝐴 ≠ 0)
61, 2, 5, 3divne0d 11624 . . . . . 6 (𝜑 → (𝐴 / 𝐵) ≠ 0)
74, 6jca 515 . . . . 5 (𝜑 → ((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0))
8 recbothd.5 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
9 recbothd.7 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
10 recbothd.8 . . . . . . 7 (𝜑𝐷 ≠ 0)
118, 9, 10divcld 11608 . . . . . 6 (𝜑 → (𝐶 / 𝐷) ∈ ℂ)
12 recbothd.6 . . . . . . 7 (𝜑𝐶 ≠ 0)
138, 9, 12, 10divne0d 11624 . . . . . 6 (𝜑 → (𝐶 / 𝐷) ≠ 0)
1411, 13jca 515 . . . . 5 (𝜑 → ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0))
157, 14jca 515 . . . 4 (𝜑 → (((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0) ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)))
16 rec11 11530 . . . 4 ((((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0) ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)) → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐴 / 𝐵) = (𝐶 / 𝐷)))
1715, 16syl 17 . . 3 (𝜑 → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐴 / 𝐵) = (𝐶 / 𝐷)))
1817bicomd 226 . 2 (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷))))
191, 2, 5, 3recdivd 11625 . . 3 (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))
208, 9, 12, 10recdivd 11625 . . 3 (𝜑 → (1 / (𝐶 / 𝐷)) = (𝐷 / 𝐶))
2119, 20eqeq12d 2753 . 2 (𝜑 → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶)))
2218, 21bitrd 282 1 (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  (class class class)co 7213  cc 10727  0cc0 10729  1c1 10730   / cdiv 11489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490
This theorem is referenced by:  lcmineqlem11  39781
  Copyright terms: Public domain W3C validator