Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  recbothd Structured version   Visualization version   GIF version

Theorem recbothd 41974
Description: Take reciprocal on both sides. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
recbothd.1 (𝜑𝐴 ∈ ℂ)
recbothd.2 (𝜑𝐴 ≠ 0)
recbothd.3 (𝜑𝐵 ∈ ℂ)
recbothd.4 (𝜑𝐵 ≠ 0)
recbothd.5 (𝜑𝐶 ∈ ℂ)
recbothd.6 (𝜑𝐶 ≠ 0)
recbothd.7 (𝜑𝐷 ∈ ℂ)
recbothd.8 (𝜑𝐷 ≠ 0)
Assertion
Ref Expression
recbothd (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶)))

Proof of Theorem recbothd
StepHypRef Expression
1 recbothd.1 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
2 recbothd.3 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
3 recbothd.4 . . . . . . 7 (𝜑𝐵 ≠ 0)
41, 2, 3divcld 12041 . . . . . 6 (𝜑 → (𝐴 / 𝐵) ∈ ℂ)
5 recbothd.2 . . . . . . 7 (𝜑𝐴 ≠ 0)
61, 2, 5, 3divne0d 12057 . . . . . 6 (𝜑 → (𝐴 / 𝐵) ≠ 0)
74, 6jca 511 . . . . 5 (𝜑 → ((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0))
8 recbothd.5 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
9 recbothd.7 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
10 recbothd.8 . . . . . . 7 (𝜑𝐷 ≠ 0)
118, 9, 10divcld 12041 . . . . . 6 (𝜑 → (𝐶 / 𝐷) ∈ ℂ)
12 recbothd.6 . . . . . . 7 (𝜑𝐶 ≠ 0)
138, 9, 12, 10divne0d 12057 . . . . . 6 (𝜑 → (𝐶 / 𝐷) ≠ 0)
1411, 13jca 511 . . . . 5 (𝜑 → ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0))
157, 14jca 511 . . . 4 (𝜑 → (((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0) ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)))
16 rec11 11963 . . . 4 ((((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0) ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)) → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐴 / 𝐵) = (𝐶 / 𝐷)))
1715, 16syl 17 . . 3 (𝜑 → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐴 / 𝐵) = (𝐶 / 𝐷)))
1817bicomd 223 . 2 (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷))))
191, 2, 5, 3recdivd 12058 . . 3 (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))
208, 9, 12, 10recdivd 12058 . . 3 (𝜑 → (1 / (𝐶 / 𝐷)) = (𝐷 / 𝐶))
2119, 20eqeq12d 2751 . 2 (𝜑 → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶)))
2218, 21bitrd 279 1 (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   / cdiv 11918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919
This theorem is referenced by:  lcmineqlem11  42021
  Copyright terms: Public domain W3C validator