| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > recbothd | Structured version Visualization version GIF version | ||
| Description: Take reciprocal on both sides. (Contributed by metakunt, 12-May-2024.) |
| Ref | Expression |
|---|---|
| recbothd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| recbothd.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| recbothd.3 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| recbothd.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| recbothd.5 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| recbothd.6 | ⊢ (𝜑 → 𝐶 ≠ 0) |
| recbothd.7 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| recbothd.8 | ⊢ (𝜑 → 𝐷 ≠ 0) |
| Ref | Expression |
|---|---|
| recbothd | ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recbothd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | recbothd.3 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | recbothd.4 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 4 | 1, 2, 3 | divcld 11894 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℂ) |
| 5 | recbothd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 6 | 1, 2, 5, 3 | divne0d 11910 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
| 7 | 4, 6 | jca 511 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0)) |
| 8 | recbothd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 9 | recbothd.7 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 10 | recbothd.8 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ≠ 0) | |
| 11 | 8, 9, 10 | divcld 11894 | . . . . . 6 ⊢ (𝜑 → (𝐶 / 𝐷) ∈ ℂ) |
| 12 | recbothd.6 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≠ 0) | |
| 13 | 8, 9, 12, 10 | divne0d 11910 | . . . . . 6 ⊢ (𝜑 → (𝐶 / 𝐷) ≠ 0) |
| 14 | 11, 13 | jca 511 | . . . . 5 ⊢ (𝜑 → ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)) |
| 15 | 7, 14 | jca 511 | . . . 4 ⊢ (𝜑 → (((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0) ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0))) |
| 16 | rec11 11816 | . . . 4 ⊢ ((((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0) ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)) → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐴 / 𝐵) = (𝐶 / 𝐷))) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐴 / 𝐵) = (𝐶 / 𝐷))) |
| 18 | 17 | bicomd 223 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)))) |
| 19 | 1, 2, 5, 3 | recdivd 11911 | . . 3 ⊢ (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) |
| 20 | 8, 9, 12, 10 | recdivd 11911 | . . 3 ⊢ (𝜑 → (1 / (𝐶 / 𝐷)) = (𝐷 / 𝐶)) |
| 21 | 19, 20 | eqeq12d 2747 | . 2 ⊢ (𝜑 → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶))) |
| 22 | 18, 21 | bitrd 279 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 (class class class)co 7346 ℂcc 11001 0cc0 11003 1c1 11004 / cdiv 11771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 |
| This theorem is referenced by: lcmineqlem11 42071 |
| Copyright terms: Public domain | W3C validator |