![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > recbothd | Structured version Visualization version GIF version |
Description: Take reciprocal on both sides. (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
recbothd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
recbothd.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
recbothd.3 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
recbothd.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
recbothd.5 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
recbothd.6 | ⊢ (𝜑 → 𝐶 ≠ 0) |
recbothd.7 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
recbothd.8 | ⊢ (𝜑 → 𝐷 ≠ 0) |
Ref | Expression |
---|---|
recbothd | ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recbothd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | recbothd.3 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | recbothd.4 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | 1, 2, 3 | divcld 12041 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℂ) |
5 | recbothd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0) | |
6 | 1, 2, 5, 3 | divne0d 12057 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
7 | 4, 6 | jca 511 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0)) |
8 | recbothd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
9 | recbothd.7 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
10 | recbothd.8 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ≠ 0) | |
11 | 8, 9, 10 | divcld 12041 | . . . . . 6 ⊢ (𝜑 → (𝐶 / 𝐷) ∈ ℂ) |
12 | recbothd.6 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≠ 0) | |
13 | 8, 9, 12, 10 | divne0d 12057 | . . . . . 6 ⊢ (𝜑 → (𝐶 / 𝐷) ≠ 0) |
14 | 11, 13 | jca 511 | . . . . 5 ⊢ (𝜑 → ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)) |
15 | 7, 14 | jca 511 | . . . 4 ⊢ (𝜑 → (((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0) ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0))) |
16 | rec11 11963 | . . . 4 ⊢ ((((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0) ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)) → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐴 / 𝐵) = (𝐶 / 𝐷))) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐴 / 𝐵) = (𝐶 / 𝐷))) |
18 | 17 | bicomd 223 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)))) |
19 | 1, 2, 5, 3 | recdivd 12058 | . . 3 ⊢ (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) |
20 | 8, 9, 12, 10 | recdivd 12058 | . . 3 ⊢ (𝜑 → (1 / (𝐶 / 𝐷)) = (𝐷 / 𝐶)) |
21 | 19, 20 | eqeq12d 2751 | . 2 ⊢ (𝜑 → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶))) |
22 | 18, 21 | bitrd 279 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 / cdiv 11918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 |
This theorem is referenced by: lcmineqlem11 42021 |
Copyright terms: Public domain | W3C validator |