| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > recbothd | Structured version Visualization version GIF version | ||
| Description: Take reciprocal on both sides. (Contributed by metakunt, 12-May-2024.) |
| Ref | Expression |
|---|---|
| recbothd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| recbothd.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| recbothd.3 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| recbothd.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| recbothd.5 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| recbothd.6 | ⊢ (𝜑 → 𝐶 ≠ 0) |
| recbothd.7 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| recbothd.8 | ⊢ (𝜑 → 𝐷 ≠ 0) |
| Ref | Expression |
|---|---|
| recbothd | ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recbothd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | recbothd.3 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | recbothd.4 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 4 | 1, 2, 3 | divcld 11965 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℂ) |
| 5 | recbothd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 6 | 1, 2, 5, 3 | divne0d 11981 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
| 7 | 4, 6 | jca 511 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0)) |
| 8 | recbothd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 9 | recbothd.7 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 10 | recbothd.8 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ≠ 0) | |
| 11 | 8, 9, 10 | divcld 11965 | . . . . . 6 ⊢ (𝜑 → (𝐶 / 𝐷) ∈ ℂ) |
| 12 | recbothd.6 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≠ 0) | |
| 13 | 8, 9, 12, 10 | divne0d 11981 | . . . . . 6 ⊢ (𝜑 → (𝐶 / 𝐷) ≠ 0) |
| 14 | 11, 13 | jca 511 | . . . . 5 ⊢ (𝜑 → ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)) |
| 15 | 7, 14 | jca 511 | . . . 4 ⊢ (𝜑 → (((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0) ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0))) |
| 16 | rec11 11887 | . . . 4 ⊢ ((((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0) ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)) → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐴 / 𝐵) = (𝐶 / 𝐷))) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐴 / 𝐵) = (𝐶 / 𝐷))) |
| 18 | 17 | bicomd 223 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)))) |
| 19 | 1, 2, 5, 3 | recdivd 11982 | . . 3 ⊢ (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) |
| 20 | 8, 9, 12, 10 | recdivd 11982 | . . 3 ⊢ (𝜑 → (1 / (𝐶 / 𝐷)) = (𝐷 / 𝐶)) |
| 21 | 19, 20 | eqeq12d 2746 | . 2 ⊢ (𝜑 → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶))) |
| 22 | 18, 21 | bitrd 279 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 / cdiv 11842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 |
| This theorem is referenced by: lcmineqlem11 42034 |
| Copyright terms: Public domain | W3C validator |