Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  recbothd Structured version   Visualization version   GIF version

Theorem recbothd 40479
Description: Take reciprocal on both sides. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
recbothd.1 (𝜑𝐴 ∈ ℂ)
recbothd.2 (𝜑𝐴 ≠ 0)
recbothd.3 (𝜑𝐵 ∈ ℂ)
recbothd.4 (𝜑𝐵 ≠ 0)
recbothd.5 (𝜑𝐶 ∈ ℂ)
recbothd.6 (𝜑𝐶 ≠ 0)
recbothd.7 (𝜑𝐷 ∈ ℂ)
recbothd.8 (𝜑𝐷 ≠ 0)
Assertion
Ref Expression
recbothd (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶)))

Proof of Theorem recbothd
StepHypRef Expression
1 recbothd.1 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
2 recbothd.3 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
3 recbothd.4 . . . . . . 7 (𝜑𝐵 ≠ 0)
41, 2, 3divcld 11938 . . . . . 6 (𝜑 → (𝐴 / 𝐵) ∈ ℂ)
5 recbothd.2 . . . . . . 7 (𝜑𝐴 ≠ 0)
61, 2, 5, 3divne0d 11954 . . . . . 6 (𝜑 → (𝐴 / 𝐵) ≠ 0)
74, 6jca 513 . . . . 5 (𝜑 → ((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0))
8 recbothd.5 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
9 recbothd.7 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
10 recbothd.8 . . . . . . 7 (𝜑𝐷 ≠ 0)
118, 9, 10divcld 11938 . . . . . 6 (𝜑 → (𝐶 / 𝐷) ∈ ℂ)
12 recbothd.6 . . . . . . 7 (𝜑𝐶 ≠ 0)
138, 9, 12, 10divne0d 11954 . . . . . 6 (𝜑 → (𝐶 / 𝐷) ≠ 0)
1411, 13jca 513 . . . . 5 (𝜑 → ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0))
157, 14jca 513 . . . 4 (𝜑 → (((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0) ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)))
16 rec11 11860 . . . 4 ((((𝐴 / 𝐵) ∈ ℂ ∧ (𝐴 / 𝐵) ≠ 0) ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)) → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐴 / 𝐵) = (𝐶 / 𝐷)))
1715, 16syl 17 . . 3 (𝜑 → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐴 / 𝐵) = (𝐶 / 𝐷)))
1817bicomd 222 . 2 (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷))))
191, 2, 5, 3recdivd 11955 . . 3 (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))
208, 9, 12, 10recdivd 11955 . . 3 (𝜑 → (1 / (𝐶 / 𝐷)) = (𝐷 / 𝐶))
2119, 20eqeq12d 2753 . 2 (𝜑 → ((1 / (𝐴 / 𝐵)) = (1 / (𝐶 / 𝐷)) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶)))
2218, 21bitrd 279 1 (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2944  (class class class)co 7362  cc 11056  0cc0 11058  1c1 11059   / cdiv 11819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-po 5550  df-so 5551  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820
This theorem is referenced by:  lcmineqlem11  40525
  Copyright terms: Public domain W3C validator