| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divne0d | Structured version Visualization version GIF version | ||
| Description: The ratio of nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divne0d.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| divne0d.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| divne0d | ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divne0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | divne0d.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 5 | divne0 11856 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ≠ 0) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7390 ℂcc 11073 0cc0 11075 / cdiv 11842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 |
| This theorem is referenced by: ntrivcvgtail 15873 tanval3 16109 lcmgcdlem 16583 pcdiv 16830 pcqdiv 16835 sylow1lem1 19535 fincygsubgodd 20051 i1fmulc 25611 itg1mulc 25612 dvcnvlem 25887 plydivlem4 26211 tanarg 26535 logcnlem4 26561 angcld 26722 angrteqvd 26723 cosangneg2d 26724 angrtmuld 26725 ang180lem1 26726 ang180lem2 26727 ang180lem3 26728 ang180lem4 26729 ang180lem5 26730 lawcoslem1 26732 lawcos 26733 isosctrlem2 26736 isosctrlem3 26737 angpieqvdlem2 26746 mcubic 26764 cubic2 26765 cubic 26766 quartlem4 26777 tanatan 26836 dmgmdivn0 26945 lgamgulmlem2 26947 gamcvg2lem 26976 nrt2irr 30409 constrrtlc1 33729 qqhval2lem 33978 iprodgam 35736 recbothd 41987 aks4d1p1p7 42069 aks6d1c2p2 42114 unitscyglem2 42191 pellexlem6 42829 bccm1k 44338 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 wallispilem4 46073 stirlinglem1 46079 stirlinglem3 46081 stirlinglem4 46082 stirlinglem7 46085 stirlinglem13 46091 stirlinglem14 46092 stirlinglem15 46093 |
| Copyright terms: Public domain | W3C validator |