Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divne0d | Structured version Visualization version GIF version |
Description: The ratio of nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divne0d.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
divne0d.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
divne0d | ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divne0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | divne0d.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
5 | divne0 11673 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ≠ 0) | |
6 | 1, 2, 3, 4, 5 | syl22anc 835 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2101 ≠ wne 2938 (class class class)co 7295 ℂcc 10897 0cc0 10899 / cdiv 11660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-po 5505 df-so 5506 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 |
This theorem is referenced by: ntrivcvgtail 15640 tanval3 15871 lcmgcdlem 16339 pcdiv 16581 pcqdiv 16586 sylow1lem1 19231 fincygsubgodd 19743 i1fmulc 24896 itg1mulc 24897 dvcnvlem 25168 plydivlem4 25484 tanarg 25802 logcnlem4 25828 angcld 25983 angrteqvd 25984 cosangneg2d 25985 angrtmuld 25986 ang180lem1 25987 ang180lem2 25988 ang180lem3 25989 ang180lem4 25990 ang180lem5 25991 lawcoslem1 25993 lawcos 25994 isosctrlem2 25997 isosctrlem3 25998 angpieqvdlem2 26007 mcubic 26025 cubic2 26026 cubic 26027 quartlem4 26038 tanatan 26097 dmgmdivn0 26205 lgamgulmlem2 26207 gamcvg2lem 26236 qqhval2lem 31959 iprodgam 33736 recbothd 40027 aks4d1p1p7 40108 pellexlem6 40679 bccm1k 41984 ioodvbdlimc1lem2 43508 ioodvbdlimc2lem 43510 wallispilem4 43644 stirlinglem1 43650 stirlinglem3 43652 stirlinglem4 43653 stirlinglem7 43656 stirlinglem13 43662 stirlinglem14 43663 stirlinglem15 43664 |
Copyright terms: Public domain | W3C validator |