| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divne0d | Structured version Visualization version GIF version | ||
| Description: The ratio of nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divne0d.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| divne0d.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| divne0d | ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divne0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | divne0d.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 5 | divne0 11908 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ≠ 0) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2932 (class class class)co 7405 ℂcc 11127 0cc0 11129 / cdiv 11894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 |
| This theorem is referenced by: ntrivcvgtail 15916 tanval3 16152 lcmgcdlem 16625 pcdiv 16872 pcqdiv 16877 sylow1lem1 19579 fincygsubgodd 20095 i1fmulc 25656 itg1mulc 25657 dvcnvlem 25932 plydivlem4 26256 tanarg 26580 logcnlem4 26606 angcld 26767 angrteqvd 26768 cosangneg2d 26769 angrtmuld 26770 ang180lem1 26771 ang180lem2 26772 ang180lem3 26773 ang180lem4 26774 ang180lem5 26775 lawcoslem1 26777 lawcos 26778 isosctrlem2 26781 isosctrlem3 26782 angpieqvdlem2 26791 mcubic 26809 cubic2 26810 cubic 26811 quartlem4 26822 tanatan 26881 dmgmdivn0 26990 lgamgulmlem2 26992 gamcvg2lem 27021 nrt2irr 30454 constrrtlc1 33766 qqhval2lem 34012 iprodgam 35759 recbothd 42005 aks4d1p1p7 42087 aks6d1c2p2 42132 unitscyglem2 42209 pellexlem6 42857 bccm1k 44366 ioodvbdlimc1lem2 45961 ioodvbdlimc2lem 45963 wallispilem4 46097 stirlinglem1 46103 stirlinglem3 46105 stirlinglem4 46106 stirlinglem7 46109 stirlinglem13 46115 stirlinglem14 46116 stirlinglem15 46117 |
| Copyright terms: Public domain | W3C validator |