| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divne0d | Structured version Visualization version GIF version | ||
| Description: The ratio of nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divne0d.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| divne0d.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| divne0d | ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divne0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | divne0d.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 5 | divne0 11795 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ≠ 0) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ≠ wne 2929 (class class class)co 7352 ℂcc 11011 0cc0 11013 / cdiv 11781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 |
| This theorem is referenced by: ntrivcvgtail 15809 tanval3 16045 lcmgcdlem 16519 pcdiv 16766 pcqdiv 16771 sylow1lem1 19512 fincygsubgodd 20028 i1fmulc 25632 itg1mulc 25633 dvcnvlem 25908 plydivlem4 26232 tanarg 26556 logcnlem4 26582 angcld 26743 angrteqvd 26744 cosangneg2d 26745 angrtmuld 26746 ang180lem1 26747 ang180lem2 26748 ang180lem3 26749 ang180lem4 26750 ang180lem5 26751 lawcoslem1 26753 lawcos 26754 isosctrlem2 26757 isosctrlem3 26758 angpieqvdlem2 26767 mcubic 26785 cubic2 26786 cubic 26787 quartlem4 26798 tanatan 26857 dmgmdivn0 26966 lgamgulmlem2 26968 gamcvg2lem 26997 nrt2irr 30455 constrrtlc1 33766 qqhval2lem 34015 iprodgam 35807 recbothd 42105 aks4d1p1p7 42187 aks6d1c2p2 42232 unitscyglem2 42309 pellexlem6 42951 bccm1k 44459 ioodvbdlimc1lem2 46054 ioodvbdlimc2lem 46056 wallispilem4 46190 stirlinglem1 46196 stirlinglem3 46198 stirlinglem4 46199 stirlinglem7 46202 stirlinglem13 46208 stirlinglem14 46209 stirlinglem15 46210 |
| Copyright terms: Public domain | W3C validator |