Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divne0d | Structured version Visualization version GIF version |
Description: The ratio of nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divne0d.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
divne0d.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
divne0d | ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divne0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | divne0d.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
5 | divne0 11361 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ≠ 0) | |
6 | 1, 2, 3, 4, 5 | syl22anc 837 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2951 (class class class)co 7156 ℂcc 10586 0cc0 10588 / cdiv 11348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 |
This theorem is referenced by: ntrivcvgtail 15317 tanval3 15548 lcmgcdlem 16015 pcdiv 16257 pcqdiv 16262 sylow1lem1 18803 fincygsubgodd 19315 i1fmulc 24416 itg1mulc 24417 dvcnvlem 24688 plydivlem4 25004 tanarg 25322 logcnlem4 25348 angcld 25503 angrteqvd 25504 cosangneg2d 25505 angrtmuld 25506 ang180lem1 25507 ang180lem2 25508 ang180lem3 25509 ang180lem4 25510 ang180lem5 25511 lawcoslem1 25513 lawcos 25514 isosctrlem2 25517 isosctrlem3 25518 angpieqvdlem2 25527 mcubic 25545 cubic2 25546 cubic 25547 quartlem4 25558 tanatan 25617 dmgmdivn0 25725 lgamgulmlem2 25727 gamcvg2lem 25756 qqhval2lem 31462 iprodgam 33235 recbothd 39594 aks4d1p1p7 39674 pellexlem6 40183 bccm1k 41454 ioodvbdlimc1lem2 42975 ioodvbdlimc2lem 42977 wallispilem4 43111 stirlinglem1 43117 stirlinglem3 43119 stirlinglem4 43120 stirlinglem7 43123 stirlinglem13 43129 stirlinglem14 43130 stirlinglem15 43131 |
Copyright terms: Public domain | W3C validator |