![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divne0d | Structured version Visualization version GIF version |
Description: The ratio of nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divne0d.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
divne0d.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
divne0d | ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divne0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | divne0d.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
5 | divne0 10990 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ≠ 0) | |
6 | 1, 2, 3, 4, 5 | syl22anc 868 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ≠ wne 2972 (class class class)co 6879 ℂcc 10223 0cc0 10225 / cdiv 10977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-po 5234 df-so 5235 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-div 10978 |
This theorem is referenced by: ntrivcvgtail 14968 tanval3 15199 lcmgcdlem 15653 pcdiv 15889 pcqdiv 15894 sylow1lem1 18325 i1fmulc 23810 itg1mulc 23811 dvcnvlem 24079 plydivlem4 24391 tanarg 24705 logcnlem4 24731 angcld 24886 angrteqvd 24887 cosangneg2d 24888 angrtmuld 24889 ang180lem1 24890 ang180lem2 24891 ang180lem3 24892 ang180lem4 24893 ang180lem5 24894 lawcoslem1 24896 lawcos 24897 isosctrlem2 24900 isosctrlem3 24901 angpieqvdlem2 24907 mcubic 24925 cubic2 24926 cubic 24927 quartlem4 24938 tanatan 24997 dmgmdivn0 25105 lgamgulmlem2 25107 gamcvg2lem 25136 qqhval2lem 30540 iprodgam 32141 pellexlem6 38179 bccm1k 39318 ioodvbdlimc1lem2 40886 ioodvbdlimc2lem 40888 wallispilem4 41023 stirlinglem1 41029 stirlinglem3 41031 stirlinglem4 41032 stirlinglem7 41035 stirlinglem13 41041 stirlinglem14 41042 stirlinglem15 41043 |
Copyright terms: Public domain | W3C validator |