| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divne0d | Structured version Visualization version GIF version | ||
| Description: The ratio of nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divne0d.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| divne0d.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| divne0d | ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divne0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | divne0d.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 5 | divne0 11849 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ≠ 0) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℂcc 11066 0cc0 11068 / cdiv 11835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 |
| This theorem is referenced by: ntrivcvgtail 15866 tanval3 16102 lcmgcdlem 16576 pcdiv 16823 pcqdiv 16828 sylow1lem1 19528 fincygsubgodd 20044 i1fmulc 25604 itg1mulc 25605 dvcnvlem 25880 plydivlem4 26204 tanarg 26528 logcnlem4 26554 angcld 26715 angrteqvd 26716 cosangneg2d 26717 angrtmuld 26718 ang180lem1 26719 ang180lem2 26720 ang180lem3 26721 ang180lem4 26722 ang180lem5 26723 lawcoslem1 26725 lawcos 26726 isosctrlem2 26729 isosctrlem3 26730 angpieqvdlem2 26739 mcubic 26757 cubic2 26758 cubic 26759 quartlem4 26770 tanatan 26829 dmgmdivn0 26938 lgamgulmlem2 26940 gamcvg2lem 26969 nrt2irr 30402 constrrtlc1 33722 qqhval2lem 33971 iprodgam 35729 recbothd 41980 aks4d1p1p7 42062 aks6d1c2p2 42107 unitscyglem2 42184 pellexlem6 42822 bccm1k 44331 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 wallispilem4 46066 stirlinglem1 46072 stirlinglem3 46074 stirlinglem4 46075 stirlinglem7 46078 stirlinglem13 46084 stirlinglem14 46085 stirlinglem15 46086 |
| Copyright terms: Public domain | W3C validator |