MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reltre Structured version   Visualization version   GIF version

Theorem reltre 13362
Description: For all real numbers there is a smaller real number. (Contributed by AV, 5-Sep-2020.)
Assertion
Ref Expression
reltre 𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑦 < 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem reltre
StepHypRef Expression
1 breq1 5127 . . 3 (𝑦 = (𝑥 − 1) → (𝑦 < 𝑥 ↔ (𝑥 − 1) < 𝑥))
2 peano2rem 11555 . . 3 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
3 ltm1 12088 . . 3 (𝑥 ∈ ℝ → (𝑥 − 1) < 𝑥)
41, 2, 3rspcedvdw 3609 . 2 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
54rgen 3054 1 𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑦 < 𝑥
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wral 3052  wrex 3061   class class class wbr 5124  (class class class)co 7410  cr 11133  1c1 11135   < clt 11274  cmin 11471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474
This theorem is referenced by:  reltxrnmnf  13364
  Copyright terms: Public domain W3C validator