Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpltrp | Structured version Visualization version GIF version |
Description: For all positive real numbers there is a smaller positive real number. (Contributed by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
rpltrp | ⊢ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rphalfcl 12450 | . . 3 ⊢ (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+) | |
2 | breq1 5036 | . . . 4 ⊢ (𝑦 = (𝑥 / 2) → (𝑦 < 𝑥 ↔ (𝑥 / 2) < 𝑥)) | |
3 | 2 | adantl 486 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑦 = (𝑥 / 2)) → (𝑦 < 𝑥 ↔ (𝑥 / 2) < 𝑥)) |
4 | rphalflt 12452 | . . 3 ⊢ (𝑥 ∈ ℝ+ → (𝑥 / 2) < 𝑥) | |
5 | 1, 3, 4 | rspcedvd 3545 | . 2 ⊢ (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥) |
6 | 5 | rgen 3081 | 1 ⊢ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1539 ∈ wcel 2112 ∀wral 3071 ∃wrex 3072 class class class wbr 5033 (class class class)co 7151 < clt 10706 / cdiv 11328 2c2 11722 ℝ+crp 12423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-po 5444 df-so 5445 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-2 11730 df-rp 12424 |
This theorem is referenced by: infmrp1 12771 |
Copyright terms: Public domain | W3C validator |