Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
(class class class)co 7411 ℝcr 11111
1c1 11113 − cmin 11446 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-ltxr 11255 df-sub 11448 df-neg 11449 |
This theorem is referenced by: lem1
12059 addltmul
12450 div4p1lem1div2
12469 nnunb
12470 suprzcl
12644 zbtwnre
12932 rebtwnz
12933 qbtwnre
13180 qbtwnxr
13181 xnn0lem1lt
13225 xrinfmsslem
13289 xrub
13293 reltre
13321 elfznelfzo
13739 fldiv4p1lem1div2
13802 fldiv4lem1div2uz2
13803 ceile
13816 intfracq
13826 fldiv
13827 m1modnnsub1
13884 expubnd
14144 bernneq2
14195 expnbnd
14197 cshwidxm1
14759 isercolllem1
15613 tgioo
24319 icoopnst
24462 mbfi1fseqlem6
25245 dvfsumlem1
25550 dvfsumlem2
25551 dgreq0
25786 advlog
26169 atanlogsublem
26427 birthdaylem3
26465 wilthlem1
26579 ftalem5
26588 ppiub
26714 chtublem
26721 chtub
26722 logfaclbnd
26732 logfacbnd3
26733 perfectlem2
26740 lgsval2lem
26817 lgsqrlem2
26857 gausslemma2dlem0c
26868 gausslemma2dlem1a
26875 lgseisenlem2
26886 lgseisen
26889 lgsquadlem1
26890 lgsquadlem2
26891 2lgslem1c
26903 2lgsoddprmlem2
26919 rplogsumlem1
26994 selberg2lem
27060 pntrsumo1
27075 pntpbnd1a
27095 colinearalglem4
28205 axlowdimlem16
28253 axeuclidlem
28258 nbusgrvtxm1
28674 pthdlem1
29061 crctcshwlkn0lem1
29102 wwlksm1edg
29173 clwwlkel
29337 clwwlknonex2lem2
29399 numclwwlk7
29682 addltmulALT
31737 cvmliftlem2
34346 cvmliftlem6
34350 cvmliftlem8
34352 cvmliftlem9
34353 cvmliftlem10
34354 gg-dvfsumlem2
35252 irrdiff
36293 iooelexlt
36329 ltflcei
36562 poimirlem12
36586 poimirlem13
36587 poimirlem14
36588 poimirlem31
36605 poimirlem32
36606 itg2addnclem2
36626 itg2addnclem3
36627 monoords
44086 supxrgere
44122 infleinflem2
44160 unb2ltle
44204 limsupre3lem
44527 xlimxrre
44626 xlimmnfv
44629 stoweidlem14
44809 stoweidlem34
44829 fourierdlem11
44913 fourierdlem12
44914 fourierdlem15
44917 fourierdlem42
44944 fourierdlem50
44951 fourierdlem64
44965 fourierdlem79
44980 smfresal
45583 zm1nn
46089 m1mod0mod1
46116 nn0oALTV
46443 perfectALTVlem2
46469 m1modmmod
47285 difmodm1lt
47286 flnn0div2ge
47297 logbpw2m1
47331 fllog2
47332 |