![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resttopon2 | Structured version Visualization version GIF version |
Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
resttopon2 | β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β (TopOnβ(π΄ β© π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22833 | . . 3 β’ (π½ β (TopOnβπ) β π½ β Top) | |
2 | resttop 23082 | . . 3 β’ ((π½ β Top β§ π΄ β π) β (π½ βΎt π΄) β Top) | |
3 | 1, 2 | sylan 578 | . 2 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β Top) |
4 | toponuni 22834 | . . . . 5 β’ (π½ β (TopOnβπ) β π = βͺ π½) | |
5 | 4 | ineq2d 4206 | . . . 4 β’ (π½ β (TopOnβπ) β (π΄ β© π) = (π΄ β© βͺ π½)) |
6 | 5 | adantr 479 | . . 3 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π΄ β© π) = (π΄ β© βͺ π½)) |
7 | eqid 2725 | . . . . 5 β’ βͺ π½ = βͺ π½ | |
8 | 7 | restuni2 23089 | . . . 4 β’ ((π½ β Top β§ π΄ β π) β (π΄ β© βͺ π½) = βͺ (π½ βΎt π΄)) |
9 | 1, 8 | sylan 578 | . . 3 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π΄ β© βͺ π½) = βͺ (π½ βΎt π΄)) |
10 | 6, 9 | eqtrd 2765 | . 2 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π΄ β© π) = βͺ (π½ βΎt π΄)) |
11 | istopon 22832 | . 2 β’ ((π½ βΎt π΄) β (TopOnβ(π΄ β© π)) β ((π½ βΎt π΄) β Top β§ (π΄ β© π) = βͺ (π½ βΎt π΄))) | |
12 | 3, 10, 11 | sylanbrc 581 | 1 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β (TopOnβ(π΄ β© π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β© cin 3938 βͺ cuni 4903 βcfv 6543 (class class class)co 7416 βΎt crest 17401 Topctop 22813 TopOnctopon 22830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-en 8963 df-fin 8966 df-fi 9434 df-rest 17403 df-topgen 17424 df-top 22814 df-topon 22831 df-bases 22867 |
This theorem is referenced by: resstps 23109 lmss 23220 |
Copyright terms: Public domain | W3C validator |