MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem1 Structured version   Visualization version   GIF version

Theorem rpnnen2lem1 16247
Description: Lemma for rpnnen2 16259. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem1 ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹𝐴)‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁
Allowed substitution hints:   𝐹(𝑥,𝑛)   𝑁(𝑥)

Proof of Theorem rpnnen2lem1
StepHypRef Expression
1 nnex 12270 . . . . 5 ℕ ∈ V
21elpw2 5340 . . . 4 (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ)
3 eleq2 2828 . . . . . . 7 (𝑥 = 𝐴 → (𝑛𝑥𝑛𝐴))
43ifbid 4554 . . . . . 6 (𝑥 = 𝐴 → if(𝑛𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛𝐴, ((1 / 3)↑𝑛), 0))
54mpteq2dv 5250 . . . . 5 (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
6 rpnnen2.1 . . . . 5 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
71mptex 7243 . . . . 5 (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)) ∈ V
85, 6, 7fvmpt 7016 . . . 4 (𝐴 ∈ 𝒫 ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
92, 8sylbir 235 . . 3 (𝐴 ⊆ ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
109fveq1d 6909 . 2 (𝐴 ⊆ ℕ → ((𝐹𝐴)‘𝑁) = ((𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))‘𝑁))
11 eleq1 2827 . . . 4 (𝑛 = 𝑁 → (𝑛𝐴𝑁𝐴))
12 oveq2 7439 . . . 4 (𝑛 = 𝑁 → ((1 / 3)↑𝑛) = ((1 / 3)↑𝑁))
1311, 12ifbieq1d 4555 . . 3 (𝑛 = 𝑁 → if(𝑛𝐴, ((1 / 3)↑𝑛), 0) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
14 eqid 2735 . . 3 (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))
15 ovex 7464 . . . 4 ((1 / 3)↑𝑁) ∈ V
16 c0ex 11253 . . . 4 0 ∈ V
1715, 16ifex 4581 . . 3 if(𝑁𝐴, ((1 / 3)↑𝑁), 0) ∈ V
1813, 14, 17fvmpt 7016 . 2 (𝑁 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
1910, 18sylan9eq 2795 1 ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹𝐴)‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wss 3963  ifcif 4531  𝒫 cpw 4605  cmpt 5231  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   / cdiv 11918  cn 12264  3c3 12320  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-mulcl 11215  ax-i2m1 11221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-nn 12265
This theorem is referenced by:  rpnnen2lem3  16249  rpnnen2lem4  16250  rpnnen2lem9  16255  rpnnen2lem10  16256  rpnnen2lem11  16257
  Copyright terms: Public domain W3C validator