| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen2 16249. (Contributed by Mario Carneiro, 13-May-2013.) |
| Ref | Expression |
|---|---|
| rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
| Ref | Expression |
|---|---|
| rpnnen2lem1 | ⊢ ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝐴)‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnex 12251 | . . . . 5 ⊢ ℕ ∈ V | |
| 2 | 1 | elpw2 5309 | . . . 4 ⊢ (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ) |
| 3 | eleq2 2824 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝐴)) | |
| 4 | 3 | ifbid 4529 | . . . . . 6 ⊢ (𝑥 = 𝐴 → if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) |
| 5 | 4 | mpteq2dv 5220 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
| 6 | rpnnen2.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
| 7 | 1 | mptex 7220 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) ∈ V |
| 8 | 5, 6, 7 | fvmpt 6991 | . . . 4 ⊢ (𝐴 ∈ 𝒫 ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
| 9 | 2, 8 | sylbir 235 | . . 3 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
| 10 | 9 | fveq1d 6883 | . 2 ⊢ (𝐴 ⊆ ℕ → ((𝐹‘𝐴)‘𝑁) = ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))‘𝑁)) |
| 11 | eleq1 2823 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) | |
| 12 | oveq2 7418 | . . . 4 ⊢ (𝑛 = 𝑁 → ((1 / 3)↑𝑛) = ((1 / 3)↑𝑁)) | |
| 13 | 11, 12 | ifbieq1d 4530 | . . 3 ⊢ (𝑛 = 𝑁 → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
| 14 | eqid 2736 | . . 3 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) | |
| 15 | ovex 7443 | . . . 4 ⊢ ((1 / 3)↑𝑁) ∈ V | |
| 16 | c0ex 11234 | . . . 4 ⊢ 0 ∈ V | |
| 17 | 15, 16 | ifex 4556 | . . 3 ⊢ if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0) ∈ V |
| 18 | 13, 14, 17 | fvmpt 6991 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
| 19 | 10, 18 | sylan9eq 2791 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝐴)‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ifcif 4505 𝒫 cpw 4580 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 / cdiv 11899 ℕcn 12245 3c3 12301 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-mulcl 11196 ax-i2m1 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 |
| This theorem is referenced by: rpnnen2lem3 16239 rpnnen2lem4 16240 rpnnen2lem9 16245 rpnnen2lem10 16246 rpnnen2lem11 16247 |
| Copyright terms: Public domain | W3C validator |