MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem1 Structured version   Visualization version   GIF version

Theorem rpnnen2lem1 16159
Description: Lemma for rpnnen2 16171. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem1 ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹𝐴)‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁
Allowed substitution hints:   𝐹(𝑥,𝑛)   𝑁(𝑥)

Proof of Theorem rpnnen2lem1
StepHypRef Expression
1 nnex 12220 . . . . 5 ℕ ∈ V
21elpw2 5345 . . . 4 (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ)
3 eleq2 2822 . . . . . . 7 (𝑥 = 𝐴 → (𝑛𝑥𝑛𝐴))
43ifbid 4551 . . . . . 6 (𝑥 = 𝐴 → if(𝑛𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛𝐴, ((1 / 3)↑𝑛), 0))
54mpteq2dv 5250 . . . . 5 (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
6 rpnnen2.1 . . . . 5 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
71mptex 7227 . . . . 5 (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)) ∈ V
85, 6, 7fvmpt 6998 . . . 4 (𝐴 ∈ 𝒫 ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
92, 8sylbir 234 . . 3 (𝐴 ⊆ ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
109fveq1d 6893 . 2 (𝐴 ⊆ ℕ → ((𝐹𝐴)‘𝑁) = ((𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))‘𝑁))
11 eleq1 2821 . . . 4 (𝑛 = 𝑁 → (𝑛𝐴𝑁𝐴))
12 oveq2 7419 . . . 4 (𝑛 = 𝑁 → ((1 / 3)↑𝑛) = ((1 / 3)↑𝑁))
1311, 12ifbieq1d 4552 . . 3 (𝑛 = 𝑁 → if(𝑛𝐴, ((1 / 3)↑𝑛), 0) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
14 eqid 2732 . . 3 (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))
15 ovex 7444 . . . 4 ((1 / 3)↑𝑁) ∈ V
16 c0ex 11210 . . . 4 0 ∈ V
1715, 16ifex 4578 . . 3 if(𝑁𝐴, ((1 / 3)↑𝑁), 0) ∈ V
1813, 14, 17fvmpt 6998 . 2 (𝑁 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
1910, 18sylan9eq 2792 1 ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹𝐴)‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wss 3948  ifcif 4528  𝒫 cpw 4602  cmpt 5231  cfv 6543  (class class class)co 7411  0cc0 11112  1c1 11113   / cdiv 11873  cn 12214  3c3 12270  cexp 14029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-mulcl 11174  ax-i2m1 11180
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-nn 12215
This theorem is referenced by:  rpnnen2lem3  16161  rpnnen2lem4  16162  rpnnen2lem9  16167  rpnnen2lem10  16168  rpnnen2lem11  16169
  Copyright terms: Public domain W3C validator