| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen2 16135. (Contributed by Mario Carneiro, 13-May-2013.) |
| Ref | Expression |
|---|---|
| rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
| Ref | Expression |
|---|---|
| rpnnen2lem1 | ⊢ ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝐴)‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnex 12131 | . . . . 5 ⊢ ℕ ∈ V | |
| 2 | 1 | elpw2 5270 | . . . 4 ⊢ (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ) |
| 3 | eleq2 2820 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝐴)) | |
| 4 | 3 | ifbid 4496 | . . . . . 6 ⊢ (𝑥 = 𝐴 → if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) |
| 5 | 4 | mpteq2dv 5183 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
| 6 | rpnnen2.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
| 7 | 1 | mptex 7157 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) ∈ V |
| 8 | 5, 6, 7 | fvmpt 6929 | . . . 4 ⊢ (𝐴 ∈ 𝒫 ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
| 9 | 2, 8 | sylbir 235 | . . 3 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
| 10 | 9 | fveq1d 6824 | . 2 ⊢ (𝐴 ⊆ ℕ → ((𝐹‘𝐴)‘𝑁) = ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))‘𝑁)) |
| 11 | eleq1 2819 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) | |
| 12 | oveq2 7354 | . . . 4 ⊢ (𝑛 = 𝑁 → ((1 / 3)↑𝑛) = ((1 / 3)↑𝑁)) | |
| 13 | 11, 12 | ifbieq1d 4497 | . . 3 ⊢ (𝑛 = 𝑁 → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
| 14 | eqid 2731 | . . 3 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) | |
| 15 | ovex 7379 | . . . 4 ⊢ ((1 / 3)↑𝑁) ∈ V | |
| 16 | c0ex 11106 | . . . 4 ⊢ 0 ∈ V | |
| 17 | 15, 16 | ifex 4523 | . . 3 ⊢ if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0) ∈ V |
| 18 | 13, 14, 17 | fvmpt 6929 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
| 19 | 10, 18 | sylan9eq 2786 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝐴)‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ifcif 4472 𝒫 cpw 4547 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 / cdiv 11774 ℕcn 12125 3c3 12181 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-i2m1 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 |
| This theorem is referenced by: rpnnen2lem3 16125 rpnnen2lem4 16126 rpnnen2lem9 16131 rpnnen2lem10 16132 rpnnen2lem11 16133 |
| Copyright terms: Public domain | W3C validator |