MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem1 Structured version   Visualization version   GIF version

Theorem rpnnen2lem1 15559
Description: Lemma for rpnnen2 15571. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem1 ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹𝐴)‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁
Allowed substitution hints:   𝐹(𝑥,𝑛)   𝑁(𝑥)

Proof of Theorem rpnnen2lem1
StepHypRef Expression
1 nnex 11631 . . . . 5 ℕ ∈ V
21elpw2 5212 . . . 4 (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ)
3 eleq2 2878 . . . . . . 7 (𝑥 = 𝐴 → (𝑛𝑥𝑛𝐴))
43ifbid 4447 . . . . . 6 (𝑥 = 𝐴 → if(𝑛𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛𝐴, ((1 / 3)↑𝑛), 0))
54mpteq2dv 5126 . . . . 5 (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
6 rpnnen2.1 . . . . 5 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
71mptex 6963 . . . . 5 (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)) ∈ V
85, 6, 7fvmpt 6745 . . . 4 (𝐴 ∈ 𝒫 ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
92, 8sylbir 238 . . 3 (𝐴 ⊆ ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
109fveq1d 6647 . 2 (𝐴 ⊆ ℕ → ((𝐹𝐴)‘𝑁) = ((𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))‘𝑁))
11 eleq1 2877 . . . 4 (𝑛 = 𝑁 → (𝑛𝐴𝑁𝐴))
12 oveq2 7143 . . . 4 (𝑛 = 𝑁 → ((1 / 3)↑𝑛) = ((1 / 3)↑𝑁))
1311, 12ifbieq1d 4448 . . 3 (𝑛 = 𝑁 → if(𝑛𝐴, ((1 / 3)↑𝑛), 0) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
14 eqid 2798 . . 3 (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))
15 ovex 7168 . . . 4 ((1 / 3)↑𝑁) ∈ V
16 c0ex 10624 . . . 4 0 ∈ V
1715, 16ifex 4473 . . 3 if(𝑁𝐴, ((1 / 3)↑𝑁), 0) ∈ V
1813, 14, 17fvmpt 6745 . 2 (𝑁 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
1910, 18sylan9eq 2853 1 ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹𝐴)‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wss 3881  ifcif 4425  𝒫 cpw 4497  cmpt 5110  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   / cdiv 11286  cn 11625  3c3 11681  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-mulcl 10588  ax-i2m1 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-nn 11626
This theorem is referenced by:  rpnnen2lem3  15561  rpnnen2lem4  15562  rpnnen2lem9  15567  rpnnen2lem10  15568  rpnnen2lem11  15569
  Copyright terms: Public domain W3C validator