Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpnnen2lem1 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 15863. (Contributed by Mario Carneiro, 13-May-2013.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem1 | ⊢ ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝐴)‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 11909 | . . . . 5 ⊢ ℕ ∈ V | |
2 | 1 | elpw2 5264 | . . . 4 ⊢ (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ) |
3 | eleq2 2827 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝐴)) | |
4 | 3 | ifbid 4479 | . . . . . 6 ⊢ (𝑥 = 𝐴 → if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) |
5 | 4 | mpteq2dv 5172 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
6 | rpnnen2.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
7 | 1 | mptex 7081 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) ∈ V |
8 | 5, 6, 7 | fvmpt 6857 | . . . 4 ⊢ (𝐴 ∈ 𝒫 ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
9 | 2, 8 | sylbir 234 | . . 3 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
10 | 9 | fveq1d 6758 | . 2 ⊢ (𝐴 ⊆ ℕ → ((𝐹‘𝐴)‘𝑁) = ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))‘𝑁)) |
11 | eleq1 2826 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) | |
12 | oveq2 7263 | . . . 4 ⊢ (𝑛 = 𝑁 → ((1 / 3)↑𝑛) = ((1 / 3)↑𝑁)) | |
13 | 11, 12 | ifbieq1d 4480 | . . 3 ⊢ (𝑛 = 𝑁 → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
14 | eqid 2738 | . . 3 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) | |
15 | ovex 7288 | . . . 4 ⊢ ((1 / 3)↑𝑁) ∈ V | |
16 | c0ex 10900 | . . . 4 ⊢ 0 ∈ V | |
17 | 15, 16 | ifex 4506 | . . 3 ⊢ if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0) ∈ V |
18 | 13, 14, 17 | fvmpt 6857 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
19 | 10, 18 | sylan9eq 2799 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝐴)‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ifcif 4456 𝒫 cpw 4530 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 / cdiv 11562 ℕcn 11903 3c3 11959 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 |
This theorem is referenced by: rpnnen2lem3 15853 rpnnen2lem4 15854 rpnnen2lem9 15859 rpnnen2lem10 15860 rpnnen2lem11 15861 |
Copyright terms: Public domain | W3C validator |