MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem1 Structured version   Visualization version   GIF version

Theorem rpnnen2lem1 16157
Description: Lemma for rpnnen2 16169. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem1 ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹𝐴)‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁
Allowed substitution hints:   𝐹(𝑥,𝑛)   𝑁(𝑥)

Proof of Theorem rpnnen2lem1
StepHypRef Expression
1 nnex 12218 . . . . 5 ℕ ∈ V
21elpw2 5346 . . . 4 (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ)
3 eleq2 2823 . . . . . . 7 (𝑥 = 𝐴 → (𝑛𝑥𝑛𝐴))
43ifbid 4552 . . . . . 6 (𝑥 = 𝐴 → if(𝑛𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛𝐴, ((1 / 3)↑𝑛), 0))
54mpteq2dv 5251 . . . . 5 (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
6 rpnnen2.1 . . . . 5 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
71mptex 7225 . . . . 5 (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)) ∈ V
85, 6, 7fvmpt 6999 . . . 4 (𝐴 ∈ 𝒫 ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
92, 8sylbir 234 . . 3 (𝐴 ⊆ ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
109fveq1d 6894 . 2 (𝐴 ⊆ ℕ → ((𝐹𝐴)‘𝑁) = ((𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))‘𝑁))
11 eleq1 2822 . . . 4 (𝑛 = 𝑁 → (𝑛𝐴𝑁𝐴))
12 oveq2 7417 . . . 4 (𝑛 = 𝑁 → ((1 / 3)↑𝑛) = ((1 / 3)↑𝑁))
1311, 12ifbieq1d 4553 . . 3 (𝑛 = 𝑁 → if(𝑛𝐴, ((1 / 3)↑𝑛), 0) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
14 eqid 2733 . . 3 (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))
15 ovex 7442 . . . 4 ((1 / 3)↑𝑁) ∈ V
16 c0ex 11208 . . . 4 0 ∈ V
1715, 16ifex 4579 . . 3 if(𝑁𝐴, ((1 / 3)↑𝑁), 0) ∈ V
1813, 14, 17fvmpt 6999 . 2 (𝑁 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
1910, 18sylan9eq 2793 1 ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹𝐴)‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wss 3949  ifcif 4529  𝒫 cpw 4603  cmpt 5232  cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111   / cdiv 11871  cn 12212  3c3 12268  cexp 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-mulcl 11172  ax-i2m1 11178
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-nn 12213
This theorem is referenced by:  rpnnen2lem3  16159  rpnnen2lem4  16160  rpnnen2lem9  16165  rpnnen2lem10  16166  rpnnen2lem11  16167
  Copyright terms: Public domain W3C validator