![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen2lem1 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 15359. (Contributed by Mario Carneiro, 13-May-2013.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem1 | ⊢ ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝐴)‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 11381 | . . . . 5 ⊢ ℕ ∈ V | |
2 | 1 | elpw2 5062 | . . . 4 ⊢ (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ) |
3 | eleq2 2848 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝐴)) | |
4 | 3 | ifbid 4329 | . . . . . 6 ⊢ (𝑥 = 𝐴 → if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) |
5 | 4 | mpteq2dv 4980 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
6 | rpnnen2.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
7 | 1 | mptex 6758 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) ∈ V |
8 | 5, 6, 7 | fvmpt 6542 | . . . 4 ⊢ (𝐴 ∈ 𝒫 ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
9 | 2, 8 | sylbir 227 | . . 3 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
10 | 9 | fveq1d 6448 | . 2 ⊢ (𝐴 ⊆ ℕ → ((𝐹‘𝐴)‘𝑁) = ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))‘𝑁)) |
11 | eleq1 2847 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) | |
12 | oveq2 6930 | . . . 4 ⊢ (𝑛 = 𝑁 → ((1 / 3)↑𝑛) = ((1 / 3)↑𝑁)) | |
13 | 11, 12 | ifbieq1d 4330 | . . 3 ⊢ (𝑛 = 𝑁 → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
14 | eqid 2778 | . . 3 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) | |
15 | ovex 6954 | . . . 4 ⊢ ((1 / 3)↑𝑁) ∈ V | |
16 | c0ex 10370 | . . . 4 ⊢ 0 ∈ V | |
17 | 15, 16 | ifex 4355 | . . 3 ⊢ if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0) ∈ V |
18 | 13, 14, 17 | fvmpt 6542 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
19 | 10, 18 | sylan9eq 2834 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝐴)‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 ifcif 4307 𝒫 cpw 4379 ↦ cmpt 4965 ‘cfv 6135 (class class class)co 6922 0cc0 10272 1c1 10273 / cdiv 11032 ℕcn 11374 3c3 11431 ↑cexp 13178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-mulcl 10334 ax-i2m1 10340 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-nn 11375 |
This theorem is referenced by: rpnnen2lem3 15349 rpnnen2lem4 15350 rpnnen2lem9 15355 rpnnen2lem10 15356 rpnnen2lem11 15357 |
Copyright terms: Public domain | W3C validator |