MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2 Structured version   Visualization version   GIF version

Theorem rpnnen2 15935
Description: The other half of rpnnen 15936, where we show an injection from sets of positive integers to real numbers. The obvious choice for this is binary expansion, but it has the unfortunate property that it does not produce an injection on numbers which end with all 0's or all 1's (the more well-known decimal version of this is 0.999... 15593). Instead, we opt for a ternary expansion, which produces (a scaled version of) the Cantor set. Since the Cantor set is riddled with gaps, we can show that any two sequences that are not equal must differ somewhere, and when they do, they are placed a finite distance apart, thus ensuring that the map is injective.

Our map assigns to each subset 𝐴 of the positive integers the number Σ𝑘𝐴(3↑-𝑘) = Σ𝑘 ∈ ℕ((𝐹𝐴)‘𝑘), where ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, (3↑-𝑘), 0)) (rpnnen2lem1 15923). This is an infinite sum of real numbers (rpnnen2lem2 15924), and since 𝐴𝐵 implies (𝐹𝐴) ≤ (𝐹𝐵) (rpnnen2lem4 15926) and (𝐹‘ℕ) converges to 1 / 2 (rpnnen2lem3 15925) by geoisum1 15591, the sum is convergent to some real (rpnnen2lem5 15927 and rpnnen2lem6 15928) by the comparison test for convergence cvgcmp 15528. The comparison test also tells us that 𝐴𝐵 implies Σ(𝐹𝐴) ≤ Σ(𝐹𝐵) (rpnnen2lem7 15929).

Putting it all together, if we have two sets 𝑥𝑦, there must differ somewhere, and so there must be an 𝑚 such that 𝑛 < 𝑚(𝑛𝑥𝑛𝑦) but 𝑚 ∈ (𝑥𝑦) or vice versa. In this case, we split off the first 𝑚 − 1 terms (rpnnen2lem8 15930) and cancel them (rpnnen2lem10 15932), since these are the same for both sets. For the remaining terms, we use the subset property to establish that Σ(𝐹𝑦) ≤ Σ(𝐹‘(ℕ ∖ {𝑚})) and Σ(𝐹‘{𝑚}) ≤ Σ(𝐹𝑥) (where these sums are only over (ℤ𝑚)), and since Σ(𝐹‘(ℕ ∖ {𝑚})) = (3↑-𝑚) / 2 (rpnnen2lem9 15931) and Σ(𝐹‘{𝑚}) = (3↑-𝑚), we establish that Σ(𝐹𝑦) < Σ(𝐹𝑥) (rpnnen2lem11 15933) so that they must be different. By contraposition (rpnnen2lem12 15934), we find that this map is an injection. (Contributed by Mario Carneiro, 13-May-2013.) (Proof shortened by Mario Carneiro, 30-Apr-2014.) (Revised by NM, 17-Aug-2021.)

Assertion
Ref Expression
rpnnen2 𝒫 ℕ ≼ (0[,]1)

Proof of Theorem rpnnen2
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0))) = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
21rpnnen2lem12 15934 1 𝒫 ℕ ≼ (0[,]1)
Colors of variables: wff setvar class
Syntax hints:  ifcif 4459  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  (class class class)co 7275  cdom 8731  0cc0 10871  1c1 10872   / cdiv 11632  cn 11973  3c3 12029  [,]cicc 13082  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398
This theorem is referenced by:  rpnnen  15936  opnreen  23994
  Copyright terms: Public domain W3C validator