![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen2 | Structured version Visualization version GIF version |
Description: The other half of rpnnen 16106, where we show an injection from sets of
positive integers to real numbers. The obvious choice for this is
binary expansion, but it has the unfortunate property that it does not
produce an injection on numbers which end with all 0's or all 1's (the
more well-known decimal version of this is 0.999... 15763). Instead, we
opt for a ternary expansion, which produces (a scaled version of) the
Cantor set. Since the Cantor set is riddled with gaps, we can show that
any two sequences that are not equal must differ somewhere, and when
they do, they are placed a finite distance apart, thus ensuring that the
map is injective.
Our map assigns to each subset 𝐴 of the positive integers the number Σ𝑘 ∈ 𝐴(3↑-𝑘) = Σ𝑘 ∈ ℕ((𝐹‘𝐴)‘𝑘), where ((𝐹‘𝐴)‘𝑘) = if(𝑘 ∈ 𝐴, (3↑-𝑘), 0)) (rpnnen2lem1 16093). This is an infinite sum of real numbers (rpnnen2lem2 16094), and since 𝐴 ⊆ 𝐵 implies (𝐹‘𝐴) ≤ (𝐹‘𝐵) (rpnnen2lem4 16096) and (𝐹‘ℕ) converges to 1 / 2 (rpnnen2lem3 16095) by geoisum1 15761, the sum is convergent to some real (rpnnen2lem5 16097 and rpnnen2lem6 16098) by the comparison test for convergence cvgcmp 15698. The comparison test also tells us that 𝐴 ⊆ 𝐵 implies Σ(𝐹‘𝐴) ≤ Σ(𝐹‘𝐵) (rpnnen2lem7 16099). Putting it all together, if we have two sets 𝑥 ≠ 𝑦, there must differ somewhere, and so there must be an 𝑚 such that ∀𝑛 < 𝑚(𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝑦) but 𝑚 ∈ (𝑥 ∖ 𝑦) or vice versa. In this case, we split off the first 𝑚 − 1 terms (rpnnen2lem8 16100) and cancel them (rpnnen2lem10 16102), since these are the same for both sets. For the remaining terms, we use the subset property to establish that Σ(𝐹‘𝑦) ≤ Σ(𝐹‘(ℕ ∖ {𝑚})) and Σ(𝐹‘{𝑚}) ≤ Σ(𝐹‘𝑥) (where these sums are only over (ℤ≥‘𝑚)), and since Σ(𝐹‘(ℕ ∖ {𝑚})) = (3↑-𝑚) / 2 (rpnnen2lem9 16101) and Σ(𝐹‘{𝑚}) = (3↑-𝑚), we establish that Σ(𝐹‘𝑦) < Σ(𝐹‘𝑥) (rpnnen2lem11 16103) so that they must be different. By contraposition (rpnnen2lem12 16104), we find that this map is an injection. (Contributed by Mario Carneiro, 13-May-2013.) (Proof shortened by Mario Carneiro, 30-Apr-2014.) (Revised by NM, 17-Aug-2021.) |
Ref | Expression |
---|---|
rpnnen2 | ⊢ 𝒫 ℕ ≼ (0[,]1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . 2 ⊢ (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
2 | 1 | rpnnen2lem12 16104 | 1 ⊢ 𝒫 ℕ ≼ (0[,]1) |
Colors of variables: wff setvar class |
Syntax hints: ifcif 4485 𝒫 cpw 4559 class class class wbr 5104 ↦ cmpt 5187 (class class class)co 7354 ≼ cdom 8878 0cc0 11048 1c1 11049 / cdiv 11809 ℕcn 12150 3c3 12206 [,]cicc 13264 ↑cexp 13964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7669 ax-inf2 9574 ax-cnex 11104 ax-resscn 11105 ax-1cn 11106 ax-icn 11107 ax-addcl 11108 ax-addrcl 11109 ax-mulcl 11110 ax-mulrcl 11111 ax-mulcom 11112 ax-addass 11113 ax-mulass 11114 ax-distr 11115 ax-i2m1 11116 ax-1ne0 11117 ax-1rid 11118 ax-rnegex 11119 ax-rrecex 11120 ax-cnre 11121 ax-pre-lttri 11122 ax-pre-lttrn 11123 ax-pre-ltadd 11124 ax-pre-mulgt0 11125 ax-pre-sup 11126 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-int 4907 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5530 df-eprel 5536 df-po 5544 df-so 5545 df-fr 5587 df-se 5588 df-we 5589 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-pred 6252 df-ord 6319 df-on 6320 df-lim 6321 df-suc 6322 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-isom 6503 df-riota 7310 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7800 df-1st 7918 df-2nd 7919 df-frecs 8209 df-wrecs 8240 df-recs 8314 df-rdg 8353 df-1o 8409 df-er 8645 df-pm 8765 df-en 8881 df-dom 8882 df-sdom 8883 df-fin 8884 df-sup 9375 df-inf 9376 df-oi 9443 df-card 9872 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11384 df-neg 11385 df-div 11810 df-nn 12151 df-2 12213 df-3 12214 df-n0 12411 df-z 12497 df-uz 12761 df-rp 12913 df-ico 13267 df-icc 13268 df-fz 13422 df-fzo 13565 df-fl 13694 df-seq 13904 df-exp 13965 df-hash 14228 df-cj 14981 df-re 14982 df-im 14983 df-sqrt 15117 df-abs 15118 df-limsup 15350 df-clim 15367 df-rlim 15368 df-sum 15568 |
This theorem is referenced by: rpnnen 16106 opnreen 24190 |
Copyright terms: Public domain | W3C validator |