MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem10 Structured version   Visualization version   GIF version

Theorem rpnnen2lem10 15860
Description: Lemma for rpnnen2 15863. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypotheses
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
rpnnen2.2 (𝜑𝐴 ⊆ ℕ)
rpnnen2.3 (𝜑𝐵 ⊆ ℕ)
rpnnen2.4 (𝜑𝑚 ∈ (𝐴𝐵))
rpnnen2.5 (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)))
rpnnen2.6 (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
Assertion
Ref Expression
rpnnen2lem10 ((𝜑𝜓) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑘   𝐴,𝑘,𝑛,𝑥   𝐵,𝑘,𝑛,𝑥   𝑘,𝑚,𝐹   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝜓(𝑥,𝑘,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑚)   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem10
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝜓) → 𝜓)
2 rpnnen2.6 . . . 4 (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
31, 2sylib 217 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
4 rpnnen2.2 . . . . . 6 (𝜑𝐴 ⊆ ℕ)
5 rpnnen2.4 . . . . . . 7 (𝜑𝑚 ∈ (𝐴𝐵))
6 eldifi 4057 . . . . . . . 8 (𝑚 ∈ (𝐴𝐵) → 𝑚𝐴)
7 ssel2 3912 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝑚𝐴) → 𝑚 ∈ ℕ)
86, 7sylan2 592 . . . . . . 7 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ (𝐴𝐵)) → 𝑚 ∈ ℕ)
94, 5, 8syl2anc 583 . . . . . 6 (𝜑𝑚 ∈ ℕ)
10 rpnnen2.1 . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
1110rpnnen2lem8 15858 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
124, 9, 11syl2anc 583 . . . . 5 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
13 1z 12280 . . . . . . . . . . . . . 14 1 ∈ ℤ
14 nnz 12272 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
15 elfzm11 13256 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 ∈ (1...(𝑚 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚)))
1613, 14, 15sylancr 586 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝑘 ∈ (1...(𝑚 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚)))
1716biimpa 476 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚))
189, 17sylan 579 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚))
1918simp3d 1142 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → 𝑘 < 𝑚)
20 rpnnen2.5 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)))
21 elfznn 13214 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑚 − 1)) → 𝑘 ∈ ℕ)
22 breq1 5073 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 < 𝑚𝑘 < 𝑚))
23 eleq1w 2821 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛𝐴𝑘𝐴))
24 eleq1w 2821 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛𝐵𝑘𝐵))
2523, 24bibi12d 345 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝑛𝐴𝑛𝐵) ↔ (𝑘𝐴𝑘𝐵)))
2622, 25imbi12d 344 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)) ↔ (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵))))
2726rspccva 3551 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)) ∧ 𝑘 ∈ ℕ) → (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵)))
2820, 21, 27syl2an 595 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵)))
2919, 28mpd 15 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘𝐴𝑘𝐵))
3029ifbid 4479 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3110rpnnen2lem1 15851 . . . . . . . . 9 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
324, 21, 31syl2an 595 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
33 rpnnen2.3 . . . . . . . . 9 (𝜑𝐵 ⊆ ℕ)
3410rpnnen2lem1 15851 . . . . . . . . 9 ((𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3533, 21, 34syl2an 595 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3630, 32, 353eqtr4d 2788 . . . . . . 7 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐴)‘𝑘) = ((𝐹𝐵)‘𝑘))
3736sumeq2dv 15343 . . . . . 6 (𝜑 → Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘))
3837oveq1d 7270 . . . . 5 (𝜑 → (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
3912, 38eqtrd 2778 . . . 4 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
4039adantr 480 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
4110rpnnen2lem8 15858 . . . . 5 ((𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4233, 9, 41syl2anc 583 . . . 4 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4342adantr 480 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
443, 40, 433eqtr3d 2786 . 2 ((𝜑𝜓) → (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4510rpnnen2lem6 15856 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ)
464, 9, 45syl2anc 583 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ)
4710rpnnen2lem6 15856 . . . . 5 ((𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ)
4833, 9, 47syl2anc 583 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ)
49 fzfid 13621 . . . . 5 (𝜑 → (1...(𝑚 − 1)) ∈ Fin)
5010rpnnen2lem2 15852 . . . . . . 7 (𝐵 ⊆ ℕ → (𝐹𝐵):ℕ⟶ℝ)
5133, 50syl 17 . . . . . 6 (𝜑 → (𝐹𝐵):ℕ⟶ℝ)
52 ffvelrn 6941 . . . . . 6 (((𝐹𝐵):ℕ⟶ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
5351, 21, 52syl2an 595 . . . . 5 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
5449, 53fsumrecl 15374 . . . 4 (𝜑 → Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) ∈ ℝ)
55 readdcan 11079 . . . 4 ((Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ ∧ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ ∧ Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) ∈ ℝ) → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5646, 48, 54, 55syl3anc 1369 . . 3 (𝜑 → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5756adantr 480 . 2 ((𝜑𝜓) → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5844, 57mpbid 231 1 ((𝜑𝜓) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cdif 3880  wss 3883  ifcif 4456  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  3c3 11959  cz 12249  cuz 12511  ...cfz 13168  cexp 13710  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326
This theorem is referenced by:  rpnnen2lem11  15861
  Copyright terms: Public domain W3C validator