MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem10 Structured version   Visualization version   GIF version

Theorem rpnnen2lem10 16259
Description: Lemma for rpnnen2 16262. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypotheses
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
rpnnen2.2 (𝜑𝐴 ⊆ ℕ)
rpnnen2.3 (𝜑𝐵 ⊆ ℕ)
rpnnen2.4 (𝜑𝑚 ∈ (𝐴𝐵))
rpnnen2.5 (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)))
rpnnen2.6 (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
Assertion
Ref Expression
rpnnen2lem10 ((𝜑𝜓) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑘   𝐴,𝑘,𝑛,𝑥   𝐵,𝑘,𝑛,𝑥   𝑘,𝑚,𝐹   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝜓(𝑥,𝑘,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑚)   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem10
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝜓) → 𝜓)
2 rpnnen2.6 . . . 4 (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
31, 2sylib 218 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
4 rpnnen2.2 . . . . . 6 (𝜑𝐴 ⊆ ℕ)
5 rpnnen2.4 . . . . . . 7 (𝜑𝑚 ∈ (𝐴𝐵))
6 eldifi 4131 . . . . . . . 8 (𝑚 ∈ (𝐴𝐵) → 𝑚𝐴)
7 ssel2 3978 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝑚𝐴) → 𝑚 ∈ ℕ)
86, 7sylan2 593 . . . . . . 7 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ (𝐴𝐵)) → 𝑚 ∈ ℕ)
94, 5, 8syl2anc 584 . . . . . 6 (𝜑𝑚 ∈ ℕ)
10 rpnnen2.1 . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
1110rpnnen2lem8 16257 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
124, 9, 11syl2anc 584 . . . . 5 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
13 1z 12647 . . . . . . . . . . . . . 14 1 ∈ ℤ
14 nnz 12634 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
15 elfzm11 13635 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 ∈ (1...(𝑚 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚)))
1613, 14, 15sylancr 587 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝑘 ∈ (1...(𝑚 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚)))
1716biimpa 476 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚))
189, 17sylan 580 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚))
1918simp3d 1145 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → 𝑘 < 𝑚)
20 rpnnen2.5 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)))
21 elfznn 13593 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑚 − 1)) → 𝑘 ∈ ℕ)
22 breq1 5146 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 < 𝑚𝑘 < 𝑚))
23 eleq1w 2824 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛𝐴𝑘𝐴))
24 eleq1w 2824 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛𝐵𝑘𝐵))
2523, 24bibi12d 345 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝑛𝐴𝑛𝐵) ↔ (𝑘𝐴𝑘𝐵)))
2622, 25imbi12d 344 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)) ↔ (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵))))
2726rspccva 3621 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)) ∧ 𝑘 ∈ ℕ) → (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵)))
2820, 21, 27syl2an 596 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵)))
2919, 28mpd 15 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘𝐴𝑘𝐵))
3029ifbid 4549 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3110rpnnen2lem1 16250 . . . . . . . . 9 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
324, 21, 31syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
33 rpnnen2.3 . . . . . . . . 9 (𝜑𝐵 ⊆ ℕ)
3410rpnnen2lem1 16250 . . . . . . . . 9 ((𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3533, 21, 34syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3630, 32, 353eqtr4d 2787 . . . . . . 7 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐴)‘𝑘) = ((𝐹𝐵)‘𝑘))
3736sumeq2dv 15738 . . . . . 6 (𝜑 → Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘))
3837oveq1d 7446 . . . . 5 (𝜑 → (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
3912, 38eqtrd 2777 . . . 4 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
4039adantr 480 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
4110rpnnen2lem8 16257 . . . . 5 ((𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4233, 9, 41syl2anc 584 . . . 4 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4342adantr 480 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
443, 40, 433eqtr3d 2785 . 2 ((𝜑𝜓) → (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4510rpnnen2lem6 16255 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ)
464, 9, 45syl2anc 584 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ)
4710rpnnen2lem6 16255 . . . . 5 ((𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ)
4833, 9, 47syl2anc 584 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ)
49 fzfid 14014 . . . . 5 (𝜑 → (1...(𝑚 − 1)) ∈ Fin)
5010rpnnen2lem2 16251 . . . . . . 7 (𝐵 ⊆ ℕ → (𝐹𝐵):ℕ⟶ℝ)
5133, 50syl 17 . . . . . 6 (𝜑 → (𝐹𝐵):ℕ⟶ℝ)
52 ffvelcdm 7101 . . . . . 6 (((𝐹𝐵):ℕ⟶ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
5351, 21, 52syl2an 596 . . . . 5 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
5449, 53fsumrecl 15770 . . . 4 (𝜑 → Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) ∈ ℝ)
55 readdcan 11435 . . . 4 ((Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ ∧ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ ∧ Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) ∈ ℝ) → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5646, 48, 54, 55syl3anc 1373 . . 3 (𝜑 → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5756adantr 480 . 2 ((𝜑𝜓) → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5844, 57mpbid 232 1 ((𝜑𝜓) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cdif 3948  wss 3951  ifcif 4525  𝒫 cpw 4600   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  3c3 12322  cz 12613  cuz 12878  ...cfz 13547  cexp 14102  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723
This theorem is referenced by:  rpnnen2lem11  16260
  Copyright terms: Public domain W3C validator