Proof of Theorem rpnnen2lem10
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
| 2 | | rpnnen2.6 |
. . . 4
⊢ (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝐵)‘𝑘)) |
| 3 | 1, 2 | sylib 218 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → Σ𝑘 ∈ ℕ ((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝐵)‘𝑘)) |
| 4 | | rpnnen2.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| 5 | | rpnnen2.4 |
. . . . . . 7
⊢ (𝜑 → 𝑚 ∈ (𝐴 ∖ 𝐵)) |
| 6 | | eldifi 4131 |
. . . . . . . 8
⊢ (𝑚 ∈ (𝐴 ∖ 𝐵) → 𝑚 ∈ 𝐴) |
| 7 | | ssel2 3978 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ ℕ) |
| 8 | 6, 7 | sylan2 593 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ (𝐴 ∖ 𝐵)) → 𝑚 ∈ ℕ) |
| 9 | 4, 5, 8 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 𝑚 ∈ ℕ) |
| 10 | | rpnnen2.1 |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
| 11 | 10 | rpnnen2lem8 16257 |
. . . . . 6
⊢ ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) →
Σ𝑘 ∈ ℕ
((𝐹‘𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘))) |
| 12 | 4, 9, 11 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ ℕ ((𝐹‘𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘))) |
| 13 | | 1z 12647 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℤ |
| 14 | | nnz 12634 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℤ) |
| 15 | | elfzm11 13635 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℤ ∧ 𝑚
∈ ℤ) → (𝑘
∈ (1...(𝑚 − 1))
↔ (𝑘 ∈ ℤ
∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑚))) |
| 16 | 13, 14, 15 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ → (𝑘 ∈ (1...(𝑚 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑚))) |
| 17 | 16 | biimpa 476 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑚)) |
| 18 | 9, 17 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑚)) |
| 19 | 18 | simp3d 1145 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → 𝑘 < 𝑚) |
| 20 | | rpnnen2.5 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵))) |
| 21 | | elfznn 13593 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...(𝑚 − 1)) → 𝑘 ∈ ℕ) |
| 22 | | breq1 5146 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (𝑛 < 𝑚 ↔ 𝑘 < 𝑚)) |
| 23 | | eleq1w 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → (𝑛 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
| 24 | | eleq1w 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → (𝑛 ∈ 𝐵 ↔ 𝑘 ∈ 𝐵)) |
| 25 | 23, 24 | bibi12d 345 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → ((𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵) ↔ (𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵))) |
| 26 | 22, 25 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → ((𝑛 < 𝑚 → (𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵)) ↔ (𝑘 < 𝑚 → (𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵)))) |
| 27 | 26 | rspccva 3621 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ) → (𝑘 < 𝑚 → (𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵))) |
| 28 | 20, 21, 27 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 < 𝑚 → (𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵))) |
| 29 | 19, 28 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵)) |
| 30 | 29 | ifbid 4549 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0) = if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) |
| 31 | 10 | rpnnen2lem1 16250 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) = if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0)) |
| 32 | 4, 21, 31 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹‘𝐴)‘𝑘) = if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0)) |
| 33 | | rpnnen2.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ⊆ ℕ) |
| 34 | 10 | rpnnen2lem1 16250 |
. . . . . . . . 9
⊢ ((𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐵)‘𝑘) = if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) |
| 35 | 33, 21, 34 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹‘𝐵)‘𝑘) = if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) |
| 36 | 30, 32, 35 | 3eqtr4d 2787 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹‘𝐴)‘𝑘) = ((𝐹‘𝐵)‘𝑘)) |
| 37 | 36 | sumeq2dv 15738 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘)) |
| 38 | 37 | oveq1d 7446 |
. . . . 5
⊢ (𝜑 → (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘))) |
| 39 | 12, 38 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ ℕ ((𝐹‘𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘))) |
| 40 | 39 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → Σ𝑘 ∈ ℕ ((𝐹‘𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘))) |
| 41 | 10 | rpnnen2lem8 16257 |
. . . . 5
⊢ ((𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ) →
Σ𝑘 ∈ ℕ
((𝐹‘𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘))) |
| 42 | 33, 9, 41 | syl2anc 584 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ ℕ ((𝐹‘𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘))) |
| 43 | 42 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → Σ𝑘 ∈ ℕ ((𝐹‘𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘))) |
| 44 | 3, 40, 43 | 3eqtr3d 2785 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘))) |
| 45 | 10 | rpnnen2lem6 16255 |
. . . . 5
⊢ ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) →
Σ𝑘 ∈
(ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘) ∈ ℝ) |
| 46 | 4, 9, 45 | syl2anc 584 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘) ∈ ℝ) |
| 47 | 10 | rpnnen2lem6 16255 |
. . . . 5
⊢ ((𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ) →
Σ𝑘 ∈
(ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘) ∈ ℝ) |
| 48 | 33, 9, 47 | syl2anc 584 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘) ∈ ℝ) |
| 49 | | fzfid 14014 |
. . . . 5
⊢ (𝜑 → (1...(𝑚 − 1)) ∈ Fin) |
| 50 | 10 | rpnnen2lem2 16251 |
. . . . . . 7
⊢ (𝐵 ⊆ ℕ → (𝐹‘𝐵):ℕ⟶ℝ) |
| 51 | 33, 50 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐵):ℕ⟶ℝ) |
| 52 | | ffvelcdm 7101 |
. . . . . 6
⊢ (((𝐹‘𝐵):ℕ⟶ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐵)‘𝑘) ∈ ℝ) |
| 53 | 51, 21, 52 | syl2an 596 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹‘𝐵)‘𝑘) ∈ ℝ) |
| 54 | 49, 53 | fsumrecl 15770 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) ∈ ℝ) |
| 55 | | readdcan 11435 |
. . . 4
⊢
((Σ𝑘 ∈
(ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘) ∈ ℝ ∧ Σ𝑘 ∈
(ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘) ∈ ℝ ∧ Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) ∈ ℝ) → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘))) |
| 56 | 46, 48, 54, 55 | syl3anc 1373 |
. . 3
⊢ (𝜑 → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘))) |
| 57 | 56 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝜓) → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹‘𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘))) |
| 58 | 44, 57 | mpbid 232 |
1
⊢ ((𝜑 ∧ 𝜓) → Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘)) |