MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem10 Structured version   Visualization version   GIF version

Theorem rpnnen2lem10 16132
Description: Lemma for rpnnen2 16135. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypotheses
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
rpnnen2.2 (𝜑𝐴 ⊆ ℕ)
rpnnen2.3 (𝜑𝐵 ⊆ ℕ)
rpnnen2.4 (𝜑𝑚 ∈ (𝐴𝐵))
rpnnen2.5 (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)))
rpnnen2.6 (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
Assertion
Ref Expression
rpnnen2lem10 ((𝜑𝜓) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑘   𝐴,𝑘,𝑛,𝑥   𝐵,𝑘,𝑛,𝑥   𝑘,𝑚,𝐹   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝜓(𝑥,𝑘,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑚)   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem10
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝜓) → 𝜓)
2 rpnnen2.6 . . . 4 (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
31, 2sylib 218 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
4 rpnnen2.2 . . . . . 6 (𝜑𝐴 ⊆ ℕ)
5 rpnnen2.4 . . . . . . 7 (𝜑𝑚 ∈ (𝐴𝐵))
6 eldifi 4082 . . . . . . . 8 (𝑚 ∈ (𝐴𝐵) → 𝑚𝐴)
7 ssel2 3930 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝑚𝐴) → 𝑚 ∈ ℕ)
86, 7sylan2 593 . . . . . . 7 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ (𝐴𝐵)) → 𝑚 ∈ ℕ)
94, 5, 8syl2anc 584 . . . . . 6 (𝜑𝑚 ∈ ℕ)
10 rpnnen2.1 . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
1110rpnnen2lem8 16130 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
124, 9, 11syl2anc 584 . . . . 5 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
13 1z 12505 . . . . . . . . . . . . . 14 1 ∈ ℤ
14 nnz 12492 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
15 elfzm11 13498 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 ∈ (1...(𝑚 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚)))
1613, 14, 15sylancr 587 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝑘 ∈ (1...(𝑚 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚)))
1716biimpa 476 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚))
189, 17sylan 580 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚))
1918simp3d 1144 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → 𝑘 < 𝑚)
20 rpnnen2.5 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)))
21 elfznn 13456 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑚 − 1)) → 𝑘 ∈ ℕ)
22 breq1 5095 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 < 𝑚𝑘 < 𝑚))
23 eleq1w 2811 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛𝐴𝑘𝐴))
24 eleq1w 2811 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛𝐵𝑘𝐵))
2523, 24bibi12d 345 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝑛𝐴𝑛𝐵) ↔ (𝑘𝐴𝑘𝐵)))
2622, 25imbi12d 344 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)) ↔ (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵))))
2726rspccva 3576 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)) ∧ 𝑘 ∈ ℕ) → (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵)))
2820, 21, 27syl2an 596 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵)))
2919, 28mpd 15 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘𝐴𝑘𝐵))
3029ifbid 4500 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3110rpnnen2lem1 16123 . . . . . . . . 9 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
324, 21, 31syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
33 rpnnen2.3 . . . . . . . . 9 (𝜑𝐵 ⊆ ℕ)
3410rpnnen2lem1 16123 . . . . . . . . 9 ((𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3533, 21, 34syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3630, 32, 353eqtr4d 2774 . . . . . . 7 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐴)‘𝑘) = ((𝐹𝐵)‘𝑘))
3736sumeq2dv 15609 . . . . . 6 (𝜑 → Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘))
3837oveq1d 7364 . . . . 5 (𝜑 → (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
3912, 38eqtrd 2764 . . . 4 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
4039adantr 480 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
4110rpnnen2lem8 16130 . . . . 5 ((𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4233, 9, 41syl2anc 584 . . . 4 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4342adantr 480 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
443, 40, 433eqtr3d 2772 . 2 ((𝜑𝜓) → (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4510rpnnen2lem6 16128 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ)
464, 9, 45syl2anc 584 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ)
4710rpnnen2lem6 16128 . . . . 5 ((𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ)
4833, 9, 47syl2anc 584 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ)
49 fzfid 13880 . . . . 5 (𝜑 → (1...(𝑚 − 1)) ∈ Fin)
5010rpnnen2lem2 16124 . . . . . . 7 (𝐵 ⊆ ℕ → (𝐹𝐵):ℕ⟶ℝ)
5133, 50syl 17 . . . . . 6 (𝜑 → (𝐹𝐵):ℕ⟶ℝ)
52 ffvelcdm 7015 . . . . . 6 (((𝐹𝐵):ℕ⟶ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
5351, 21, 52syl2an 596 . . . . 5 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
5449, 53fsumrecl 15641 . . . 4 (𝜑 → Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) ∈ ℝ)
55 readdcan 11290 . . . 4 ((Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ ∧ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ ∧ Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) ∈ ℝ) → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5646, 48, 54, 55syl3anc 1373 . . 3 (𝜑 → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5756adantr 480 . 2 ((𝜑𝜓) → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5844, 57mpbid 232 1 ((𝜑𝜓) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cdif 3900  wss 3903  ifcif 4476  𝒫 cpw 4551   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  3c3 12184  cz 12471  cuz 12735  ...cfz 13410  cexp 13968  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594
This theorem is referenced by:  rpnnen2lem11  16133
  Copyright terms: Public domain W3C validator