MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem2 Structured version   Visualization version   GIF version

Theorem rpnnen2lem2 16124
Description: Lemma for rpnnen2 16135. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem2 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
Distinct variable group:   𝑥,𝑛,𝐴
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem2
StepHypRef Expression
1 nnex 12134 . . . 4 ℕ ∈ V
21elpw2 5273 . . 3 (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ)
3 eleq2 2817 . . . . . 6 (𝑥 = 𝐴 → (𝑛𝑥𝑛𝐴))
43ifbid 4500 . . . . 5 (𝑥 = 𝐴 → if(𝑛𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛𝐴, ((1 / 3)↑𝑛), 0))
54mpteq2dv 5186 . . . 4 (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
6 rpnnen2.1 . . . 4 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
71mptex 7159 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)) ∈ V
85, 6, 7fvmpt 6930 . . 3 (𝐴 ∈ 𝒫 ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
92, 8sylbir 235 . 2 (𝐴 ⊆ ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
10 1re 11115 . . . . . 6 1 ∈ ℝ
11 3nn 12207 . . . . . 6 3 ∈ ℕ
12 nndivre 12169 . . . . . 6 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
1310, 11, 12mp2an 692 . . . . 5 (1 / 3) ∈ ℝ
14 nnnn0 12391 . . . . 5 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
15 reexpcl 13985 . . . . 5 (((1 / 3) ∈ ℝ ∧ 𝑛 ∈ ℕ0) → ((1 / 3)↑𝑛) ∈ ℝ)
1613, 14, 15sylancr 587 . . . 4 (𝑛 ∈ ℕ → ((1 / 3)↑𝑛) ∈ ℝ)
17 0re 11117 . . . 4 0 ∈ ℝ
18 ifcl 4522 . . . 4 ((((1 / 3)↑𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ)
1916, 17, 18sylancl 586 . . 3 (𝑛 ∈ ℕ → if(𝑛𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ)
2019adantl 481 . 2 ((𝐴 ⊆ ℕ ∧ 𝑛 ∈ ℕ) → if(𝑛𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ)
219, 20fmpt3d 7050 1 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3903  ifcif 4476  𝒫 cpw 4551  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   / cdiv 11777  cn 12128  3c3 12184  0cn0 12384  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-seq 13909  df-exp 13969
This theorem is referenced by:  rpnnen2lem5  16127  rpnnen2lem6  16128  rpnnen2lem7  16129  rpnnen2lem8  16130  rpnnen2lem9  16131  rpnnen2lem10  16132  rpnnen2lem12  16134
  Copyright terms: Public domain W3C validator