Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpnnen2lem2 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 15664. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem2 | ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 11715 | . . . 4 ⊢ ℕ ∈ V | |
2 | 1 | elpw2 5210 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ) |
3 | eleq2 2821 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝐴)) | |
4 | 3 | ifbid 4434 | . . . . 5 ⊢ (𝑥 = 𝐴 → if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) |
5 | 4 | mpteq2dv 5123 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
6 | rpnnen2.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
7 | 1 | mptex 6990 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) ∈ V |
8 | 5, 6, 7 | fvmpt 6769 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
9 | 2, 8 | sylbir 238 | . 2 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
10 | 1re 10712 | . . . . . 6 ⊢ 1 ∈ ℝ | |
11 | 3nn 11788 | . . . . . 6 ⊢ 3 ∈ ℕ | |
12 | nndivre 11750 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
13 | 10, 11, 12 | mp2an 692 | . . . . 5 ⊢ (1 / 3) ∈ ℝ |
14 | nnnn0 11976 | . . . . 5 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
15 | reexpcl 13531 | . . . . 5 ⊢ (((1 / 3) ∈ ℝ ∧ 𝑛 ∈ ℕ0) → ((1 / 3)↑𝑛) ∈ ℝ) | |
16 | 13, 14, 15 | sylancr 590 | . . . 4 ⊢ (𝑛 ∈ ℕ → ((1 / 3)↑𝑛) ∈ ℝ) |
17 | 0re 10714 | . . . 4 ⊢ 0 ∈ ℝ | |
18 | ifcl 4456 | . . . 4 ⊢ ((((1 / 3)↑𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ) | |
19 | 16, 17, 18 | sylancl 589 | . . 3 ⊢ (𝑛 ∈ ℕ → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ) |
20 | 19 | adantl 485 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ) |
21 | 9, 20 | fmpt3d 6884 | 1 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 ⊆ wss 3841 ifcif 4411 𝒫 cpw 4485 ↦ cmpt 5107 ⟶wf 6329 ‘cfv 6333 (class class class)co 7164 ℝcr 10607 0cc0 10608 1c1 10609 / cdiv 11368 ℕcn 11709 3c3 11765 ℕ0cn0 11969 ↑cexp 13514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-nn 11710 df-2 11772 df-3 11773 df-n0 11970 df-z 12056 df-uz 12318 df-seq 13454 df-exp 13515 |
This theorem is referenced by: rpnnen2lem5 15656 rpnnen2lem6 15657 rpnnen2lem7 15658 rpnnen2lem8 15659 rpnnen2lem9 15660 rpnnen2lem10 15661 rpnnen2lem12 15663 |
Copyright terms: Public domain | W3C validator |