![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen2lem2 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 16166. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
rpnnen2.1 | β’ πΉ = (π₯ β π« β β¦ (π β β β¦ if(π β π₯, ((1 / 3)βπ), 0))) |
Ref | Expression |
---|---|
rpnnen2lem2 | β’ (π΄ β β β (πΉβπ΄):ββΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 12215 | . . . 4 β’ β β V | |
2 | 1 | elpw2 5335 | . . 3 β’ (π΄ β π« β β π΄ β β) |
3 | eleq2 2814 | . . . . . 6 β’ (π₯ = π΄ β (π β π₯ β π β π΄)) | |
4 | 3 | ifbid 4543 | . . . . 5 β’ (π₯ = π΄ β if(π β π₯, ((1 / 3)βπ), 0) = if(π β π΄, ((1 / 3)βπ), 0)) |
5 | 4 | mpteq2dv 5240 | . . . 4 β’ (π₯ = π΄ β (π β β β¦ if(π β π₯, ((1 / 3)βπ), 0)) = (π β β β¦ if(π β π΄, ((1 / 3)βπ), 0))) |
6 | rpnnen2.1 | . . . 4 β’ πΉ = (π₯ β π« β β¦ (π β β β¦ if(π β π₯, ((1 / 3)βπ), 0))) | |
7 | 1 | mptex 7216 | . . . 4 β’ (π β β β¦ if(π β π΄, ((1 / 3)βπ), 0)) β V |
8 | 5, 6, 7 | fvmpt 6988 | . . 3 β’ (π΄ β π« β β (πΉβπ΄) = (π β β β¦ if(π β π΄, ((1 / 3)βπ), 0))) |
9 | 2, 8 | sylbir 234 | . 2 β’ (π΄ β β β (πΉβπ΄) = (π β β β¦ if(π β π΄, ((1 / 3)βπ), 0))) |
10 | 1re 11211 | . . . . . 6 β’ 1 β β | |
11 | 3nn 12288 | . . . . . 6 β’ 3 β β | |
12 | nndivre 12250 | . . . . . 6 β’ ((1 β β β§ 3 β β) β (1 / 3) β β) | |
13 | 10, 11, 12 | mp2an 689 | . . . . 5 β’ (1 / 3) β β |
14 | nnnn0 12476 | . . . . 5 β’ (π β β β π β β0) | |
15 | reexpcl 14041 | . . . . 5 β’ (((1 / 3) β β β§ π β β0) β ((1 / 3)βπ) β β) | |
16 | 13, 14, 15 | sylancr 586 | . . . 4 β’ (π β β β ((1 / 3)βπ) β β) |
17 | 0re 11213 | . . . 4 β’ 0 β β | |
18 | ifcl 4565 | . . . 4 β’ ((((1 / 3)βπ) β β β§ 0 β β) β if(π β π΄, ((1 / 3)βπ), 0) β β) | |
19 | 16, 17, 18 | sylancl 585 | . . 3 β’ (π β β β if(π β π΄, ((1 / 3)βπ), 0) β β) |
20 | 19 | adantl 481 | . 2 β’ ((π΄ β β β§ π β β) β if(π β π΄, ((1 / 3)βπ), 0) β β) |
21 | 9, 20 | fmpt3d 7107 | 1 β’ (π΄ β β β (πΉβπ΄):ββΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wss 3940 ifcif 4520 π« cpw 4594 β¦ cmpt 5221 βΆwf 6529 βcfv 6533 (class class class)co 7401 βcr 11105 0cc0 11106 1c1 11107 / cdiv 11868 βcn 12209 3c3 12265 β0cn0 12469 βcexp 14024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-seq 13964 df-exp 14025 |
This theorem is referenced by: rpnnen2lem5 16158 rpnnen2lem6 16159 rpnnen2lem7 16160 rpnnen2lem8 16161 rpnnen2lem9 16162 rpnnen2lem10 16163 rpnnen2lem12 16165 |
Copyright terms: Public domain | W3C validator |