![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen2lem2 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 15412. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem2 | ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 11492 | . . . 4 ⊢ ℕ ∈ V | |
2 | 1 | elpw2 5139 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ) |
3 | eleq2 2871 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝐴)) | |
4 | 3 | ifbid 4403 | . . . . 5 ⊢ (𝑥 = 𝐴 → if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) |
5 | 4 | mpteq2dv 5056 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
6 | rpnnen2.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
7 | 1 | mptex 6852 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) ∈ V |
8 | 5, 6, 7 | fvmpt 6635 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
9 | 2, 8 | sylbir 236 | . 2 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
10 | 1re 10487 | . . . . . 6 ⊢ 1 ∈ ℝ | |
11 | 3nn 11564 | . . . . . 6 ⊢ 3 ∈ ℕ | |
12 | nndivre 11526 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
13 | 10, 11, 12 | mp2an 688 | . . . . 5 ⊢ (1 / 3) ∈ ℝ |
14 | nnnn0 11752 | . . . . 5 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
15 | reexpcl 13296 | . . . . 5 ⊢ (((1 / 3) ∈ ℝ ∧ 𝑛 ∈ ℕ0) → ((1 / 3)↑𝑛) ∈ ℝ) | |
16 | 13, 14, 15 | sylancr 587 | . . . 4 ⊢ (𝑛 ∈ ℕ → ((1 / 3)↑𝑛) ∈ ℝ) |
17 | 0re 10489 | . . . 4 ⊢ 0 ∈ ℝ | |
18 | ifcl 4425 | . . . 4 ⊢ ((((1 / 3)↑𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ) | |
19 | 16, 17, 18 | sylancl 586 | . . 3 ⊢ (𝑛 ∈ ℕ → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ) |
20 | 19 | adantl 482 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ) |
21 | 9, 20 | fmpt3d 6743 | 1 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 ⊆ wss 3859 ifcif 4381 𝒫 cpw 4453 ↦ cmpt 5041 ⟶wf 6221 ‘cfv 6225 (class class class)co 7016 ℝcr 10382 0cc0 10383 1c1 10384 / cdiv 11145 ℕcn 11486 3c3 11541 ℕ0cn0 11745 ↑cexp 13279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-n0 11746 df-z 11830 df-uz 12094 df-seq 13220 df-exp 13280 |
This theorem is referenced by: rpnnen2lem5 15404 rpnnen2lem6 15405 rpnnen2lem7 15406 rpnnen2lem8 15407 rpnnen2lem9 15408 rpnnen2lem10 15409 rpnnen2lem12 15411 |
Copyright terms: Public domain | W3C validator |