MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem2 Structured version   Visualization version   GIF version

Theorem rpnnen2lem2 15973
Description: Lemma for rpnnen2 15984. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem2 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
Distinct variable group:   𝑥,𝑛,𝐴
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem2
StepHypRef Expression
1 nnex 12029 . . . 4 ℕ ∈ V
21elpw2 5278 . . 3 (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ)
3 eleq2 2825 . . . . . 6 (𝑥 = 𝐴 → (𝑛𝑥𝑛𝐴))
43ifbid 4488 . . . . 5 (𝑥 = 𝐴 → if(𝑛𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛𝐴, ((1 / 3)↑𝑛), 0))
54mpteq2dv 5183 . . . 4 (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
6 rpnnen2.1 . . . 4 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
71mptex 7131 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)) ∈ V
85, 6, 7fvmpt 6907 . . 3 (𝐴 ∈ 𝒫 ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
92, 8sylbir 234 . 2 (𝐴 ⊆ ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
10 1re 11025 . . . . . 6 1 ∈ ℝ
11 3nn 12102 . . . . . 6 3 ∈ ℕ
12 nndivre 12064 . . . . . 6 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
1310, 11, 12mp2an 690 . . . . 5 (1 / 3) ∈ ℝ
14 nnnn0 12290 . . . . 5 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
15 reexpcl 13849 . . . . 5 (((1 / 3) ∈ ℝ ∧ 𝑛 ∈ ℕ0) → ((1 / 3)↑𝑛) ∈ ℝ)
1613, 14, 15sylancr 588 . . . 4 (𝑛 ∈ ℕ → ((1 / 3)↑𝑛) ∈ ℝ)
17 0re 11027 . . . 4 0 ∈ ℝ
18 ifcl 4510 . . . 4 ((((1 / 3)↑𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ)
1916, 17, 18sylancl 587 . . 3 (𝑛 ∈ ℕ → if(𝑛𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ)
2019adantl 483 . 2 ((𝐴 ⊆ ℕ ∧ 𝑛 ∈ ℕ) → if(𝑛𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ)
219, 20fmpt3d 7022 1 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wss 3892  ifcif 4465  𝒫 cpw 4539  cmpt 5164  wf 6454  cfv 6458  (class class class)co 7307  cr 10920  0cc0 10921  1c1 10922   / cdiv 11682  cn 12023  3c3 12079  0cn0 12283  cexp 13832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-3 12087  df-n0 12284  df-z 12370  df-uz 12633  df-seq 13772  df-exp 13833
This theorem is referenced by:  rpnnen2lem5  15976  rpnnen2lem6  15977  rpnnen2lem7  15978  rpnnen2lem8  15979  rpnnen2lem9  15980  rpnnen2lem10  15981  rpnnen2lem12  15983
  Copyright terms: Public domain W3C validator