Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpnnen2lem2 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 15984. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem2 | ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 12029 | . . . 4 ⊢ ℕ ∈ V | |
2 | 1 | elpw2 5278 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ) |
3 | eleq2 2825 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝐴)) | |
4 | 3 | ifbid 4488 | . . . . 5 ⊢ (𝑥 = 𝐴 → if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) |
5 | 4 | mpteq2dv 5183 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
6 | rpnnen2.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
7 | 1 | mptex 7131 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) ∈ V |
8 | 5, 6, 7 | fvmpt 6907 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
9 | 2, 8 | sylbir 234 | . 2 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
10 | 1re 11025 | . . . . . 6 ⊢ 1 ∈ ℝ | |
11 | 3nn 12102 | . . . . . 6 ⊢ 3 ∈ ℕ | |
12 | nndivre 12064 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
13 | 10, 11, 12 | mp2an 690 | . . . . 5 ⊢ (1 / 3) ∈ ℝ |
14 | nnnn0 12290 | . . . . 5 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
15 | reexpcl 13849 | . . . . 5 ⊢ (((1 / 3) ∈ ℝ ∧ 𝑛 ∈ ℕ0) → ((1 / 3)↑𝑛) ∈ ℝ) | |
16 | 13, 14, 15 | sylancr 588 | . . . 4 ⊢ (𝑛 ∈ ℕ → ((1 / 3)↑𝑛) ∈ ℝ) |
17 | 0re 11027 | . . . 4 ⊢ 0 ∈ ℝ | |
18 | ifcl 4510 | . . . 4 ⊢ ((((1 / 3)↑𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ) | |
19 | 16, 17, 18 | sylancl 587 | . . 3 ⊢ (𝑛 ∈ ℕ → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ) |
20 | 19 | adantl 483 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ) |
21 | 9, 20 | fmpt3d 7022 | 1 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 ifcif 4465 𝒫 cpw 4539 ↦ cmpt 5164 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 ℝcr 10920 0cc0 10921 1c1 10922 / cdiv 11682 ℕcn 12023 3c3 12079 ℕ0cn0 12283 ↑cexp 13832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-n0 12284 df-z 12370 df-uz 12633 df-seq 13772 df-exp 13833 |
This theorem is referenced by: rpnnen2lem5 15976 rpnnen2lem6 15977 rpnnen2lem7 15978 rpnnen2lem8 15979 rpnnen2lem9 15980 rpnnen2lem10 15981 rpnnen2lem12 15983 |
Copyright terms: Public domain | W3C validator |