MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem2 Structured version   Visualization version   GIF version

Theorem rpnnen2lem2 15570
Description: Lemma for rpnnen2 15581. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem2 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
Distinct variable group:   𝑥,𝑛,𝐴
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem2
StepHypRef Expression
1 nnex 11646 . . . 4 ℕ ∈ V
21elpw2 5250 . . 3 (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ)
3 eleq2 2903 . . . . . 6 (𝑥 = 𝐴 → (𝑛𝑥𝑛𝐴))
43ifbid 4491 . . . . 5 (𝑥 = 𝐴 → if(𝑛𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛𝐴, ((1 / 3)↑𝑛), 0))
54mpteq2dv 5164 . . . 4 (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
6 rpnnen2.1 . . . 4 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
71mptex 6988 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)) ∈ V
85, 6, 7fvmpt 6770 . . 3 (𝐴 ∈ 𝒫 ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
92, 8sylbir 237 . 2 (𝐴 ⊆ ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
10 1re 10643 . . . . . 6 1 ∈ ℝ
11 3nn 11719 . . . . . 6 3 ∈ ℕ
12 nndivre 11681 . . . . . 6 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
1310, 11, 12mp2an 690 . . . . 5 (1 / 3) ∈ ℝ
14 nnnn0 11907 . . . . 5 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
15 reexpcl 13449 . . . . 5 (((1 / 3) ∈ ℝ ∧ 𝑛 ∈ ℕ0) → ((1 / 3)↑𝑛) ∈ ℝ)
1613, 14, 15sylancr 589 . . . 4 (𝑛 ∈ ℕ → ((1 / 3)↑𝑛) ∈ ℝ)
17 0re 10645 . . . 4 0 ∈ ℝ
18 ifcl 4513 . . . 4 ((((1 / 3)↑𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ)
1916, 17, 18sylancl 588 . . 3 (𝑛 ∈ ℕ → if(𝑛𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ)
2019adantl 484 . 2 ((𝐴 ⊆ ℕ ∧ 𝑛 ∈ ℕ) → if(𝑛𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ)
219, 20fmpt3d 6882 1 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wss 3938  ifcif 4469  𝒫 cpw 4541  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   / cdiv 11299  cn 11640  3c3 11696  0cn0 11900  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-exp 13433
This theorem is referenced by:  rpnnen2lem5  15573  rpnnen2lem6  15574  rpnnen2lem7  15575  rpnnen2lem8  15576  rpnnen2lem9  15577  rpnnen2lem10  15578  rpnnen2lem12  15580
  Copyright terms: Public domain W3C validator