MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutcld Structured version   Visualization version   GIF version

Theorem scutcld 27715
Description: Closure law for surreal cuts. (Contributed by Scott Fenton, 23-Aug-2024.)
Hypothesis
Ref Expression
scutcld.1 (𝜑𝐴 <<s 𝐵)
Assertion
Ref Expression
scutcld (𝜑 → (𝐴 |s 𝐵) ∈ No )

Proof of Theorem scutcld
StepHypRef Expression
1 scutcld.1 . 2 (𝜑𝐴 <<s 𝐵)
2 scutcl 27714 . 2 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ No )
31, 2syl 17 1 (𝜑 → (𝐴 |s 𝐵) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5107  (class class class)co 7387   No csur 27551   <<s csslt 27692   |s cscut 27694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695
This theorem is referenced by:  cofcut1  27828  cofcutr  27832  addsuniflem  27908  negsunif  27961  ssltmul1  28050  ssltmul2  28051  mulsuniflem  28052  mulsunif2lem  28072  precsexlem11  28119  precsex  28120  elons2  28159  onscutlt  28165  n0sfincut  28246  zscut  28295  twocut  28309  nohalf  28310  pw2recs  28323  halfcut  28333
  Copyright terms: Public domain W3C validator