Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zaddcomlem Structured version   Visualization version   GIF version

Theorem zaddcomlem 41813
Description: Lemma for zaddcom 41814. (Contributed by SN, 1-Feb-2025.)
Assertion
Ref Expression
zaddcomlem (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Proof of Theorem zaddcomlem
StepHypRef Expression
1 simpr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → 𝐵 ∈ ℕ0)
21nn0cnd 12531 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → 𝐵 ∈ ℂ)
3 rernegcl 41733 . . . . . . . 8 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
43ad2antrr 723 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (0 − 𝐴) ∈ ℝ)
54recnd 11239 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (0 − 𝐴) ∈ ℂ)
6 simpll 764 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
76recnd 11239 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ ℂ)
82, 5, 7addassd 11233 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → ((𝐵 + (0 − 𝐴)) + 𝐴) = (𝐵 + ((0 − 𝐴) + 𝐴)))
9 renegid2 41775 . . . . . . 7 (𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) = 0)
109ad2antrr 723 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → ((0 − 𝐴) + 𝐴) = 0)
1110oveq2d 7417 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐵 + ((0 − 𝐴) + 𝐴)) = (𝐵 + 0))
12 nn0re 12478 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
13 readdrid 41771 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 + 0) = 𝐵)
1412, 13syl 17 . . . . . 6 (𝐵 ∈ ℕ0 → (𝐵 + 0) = 𝐵)
1514adantl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐵 + 0) = 𝐵)
168, 11, 153eqtrrd 2769 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → 𝐵 = ((𝐵 + (0 − 𝐴)) + 𝐴))
179oveq1d 7416 . . . . . 6 (𝐴 ∈ ℝ → (((0 − 𝐴) + 𝐴) + 𝐵) = (0 + 𝐵))
1817adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) → (((0 − 𝐴) + 𝐴) + 𝐵) = (0 + 𝐵))
19 readdlid 41765 . . . . . 6 (𝐵 ∈ ℝ → (0 + 𝐵) = 𝐵)
2012, 19syl 17 . . . . 5 (𝐵 ∈ ℕ0 → (0 + 𝐵) = 𝐵)
2118, 20sylan9eq 2784 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (((0 − 𝐴) + 𝐴) + 𝐵) = 𝐵)
22 nnnn0 12476 . . . . . . 7 ((0 − 𝐴) ∈ ℕ → (0 − 𝐴) ∈ ℕ0)
23 nn0addcom 41812 . . . . . . 7 (((0 − 𝐴) ∈ ℕ0𝐵 ∈ ℕ0) → ((0 − 𝐴) + 𝐵) = (𝐵 + (0 − 𝐴)))
2422, 23sylan 579 . . . . . 6 (((0 − 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ0) → ((0 − 𝐴) + 𝐵) = (𝐵 + (0 − 𝐴)))
2524adantll 711 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → ((0 − 𝐴) + 𝐵) = (𝐵 + (0 − 𝐴)))
2625oveq1d 7416 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (((0 − 𝐴) + 𝐵) + 𝐴) = ((𝐵 + (0 − 𝐴)) + 𝐴))
2716, 21, 263eqtr4d 2774 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (((0 − 𝐴) + 𝐴) + 𝐵) = (((0 − 𝐴) + 𝐵) + 𝐴))
285, 7, 2addassd 11233 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (((0 − 𝐴) + 𝐴) + 𝐵) = ((0 − 𝐴) + (𝐴 + 𝐵)))
295, 2, 7addassd 11233 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (((0 − 𝐴) + 𝐵) + 𝐴) = ((0 − 𝐴) + (𝐵 + 𝐴)))
3027, 28, 293eqtr3d 2772 . 2 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → ((0 − 𝐴) + (𝐴 + 𝐵)) = ((0 − 𝐴) + (𝐵 + 𝐴)))
317, 2addcld 11230 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℂ)
322, 7addcld 11230 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐵 + 𝐴) ∈ ℂ)
335, 31, 32sn-addcand 41781 . 2 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (((0 − 𝐴) + (𝐴 + 𝐵)) = ((0 − 𝐴) + (𝐵 + 𝐴)) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴)))
3430, 33mpbid 231 1 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  (class class class)co 7401  cr 11105  0cc0 11106   + caddc 11109  cn 12209  0cn0 12469   cresub 41727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-ltxr 11250  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-resub 41728
This theorem is referenced by:  zaddcom  41814
  Copyright terms: Public domain W3C validator