Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zaddcomlem Structured version   Visualization version   GIF version

Theorem zaddcomlem 42427
Description: Lemma for zaddcom 42428. (Contributed by SN, 1-Feb-2025.)
Assertion
Ref Expression
zaddcomlem (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Proof of Theorem zaddcomlem
StepHypRef Expression
1 simpr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → 𝐵 ∈ ℕ0)
21nn0cnd 12615 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → 𝐵 ∈ ℂ)
3 rernegcl 42347 . . . . . . . 8 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
43ad2antrr 725 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (0 − 𝐴) ∈ ℝ)
54recnd 11318 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (0 − 𝐴) ∈ ℂ)
6 simpll 766 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
76recnd 11318 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ ℂ)
82, 5, 7addassd 11312 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → ((𝐵 + (0 − 𝐴)) + 𝐴) = (𝐵 + ((0 − 𝐴) + 𝐴)))
9 renegid2 42389 . . . . . . 7 (𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) = 0)
109ad2antrr 725 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → ((0 − 𝐴) + 𝐴) = 0)
1110oveq2d 7464 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐵 + ((0 − 𝐴) + 𝐴)) = (𝐵 + 0))
12 nn0re 12562 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
13 readdrid 42385 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 + 0) = 𝐵)
1412, 13syl 17 . . . . . 6 (𝐵 ∈ ℕ0 → (𝐵 + 0) = 𝐵)
1514adantl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐵 + 0) = 𝐵)
168, 11, 153eqtrrd 2785 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → 𝐵 = ((𝐵 + (0 − 𝐴)) + 𝐴))
179oveq1d 7463 . . . . . 6 (𝐴 ∈ ℝ → (((0 − 𝐴) + 𝐴) + 𝐵) = (0 + 𝐵))
1817adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) → (((0 − 𝐴) + 𝐴) + 𝐵) = (0 + 𝐵))
19 readdlid 42379 . . . . . 6 (𝐵 ∈ ℝ → (0 + 𝐵) = 𝐵)
2012, 19syl 17 . . . . 5 (𝐵 ∈ ℕ0 → (0 + 𝐵) = 𝐵)
2118, 20sylan9eq 2800 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (((0 − 𝐴) + 𝐴) + 𝐵) = 𝐵)
22 nnnn0 12560 . . . . . . 7 ((0 − 𝐴) ∈ ℕ → (0 − 𝐴) ∈ ℕ0)
23 nn0addcom 42426 . . . . . . 7 (((0 − 𝐴) ∈ ℕ0𝐵 ∈ ℕ0) → ((0 − 𝐴) + 𝐵) = (𝐵 + (0 − 𝐴)))
2422, 23sylan 579 . . . . . 6 (((0 − 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ0) → ((0 − 𝐴) + 𝐵) = (𝐵 + (0 − 𝐴)))
2524adantll 713 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → ((0 − 𝐴) + 𝐵) = (𝐵 + (0 − 𝐴)))
2625oveq1d 7463 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (((0 − 𝐴) + 𝐵) + 𝐴) = ((𝐵 + (0 − 𝐴)) + 𝐴))
2716, 21, 263eqtr4d 2790 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (((0 − 𝐴) + 𝐴) + 𝐵) = (((0 − 𝐴) + 𝐵) + 𝐴))
285, 7, 2addassd 11312 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (((0 − 𝐴) + 𝐴) + 𝐵) = ((0 − 𝐴) + (𝐴 + 𝐵)))
295, 2, 7addassd 11312 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (((0 − 𝐴) + 𝐵) + 𝐴) = ((0 − 𝐴) + (𝐵 + 𝐴)))
3027, 28, 293eqtr3d 2788 . 2 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → ((0 − 𝐴) + (𝐴 + 𝐵)) = ((0 − 𝐴) + (𝐵 + 𝐴)))
317, 2addcld 11309 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℂ)
322, 7addcld 11309 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐵 + 𝐴) ∈ ℂ)
335, 31, 32sn-addcand 42395 . 2 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (((0 − 𝐴) + (𝐴 + 𝐵)) = ((0 − 𝐴) + (𝐵 + 𝐴)) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴)))
3430, 33mpbid 232 1 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  (class class class)co 7448  cr 11183  0cc0 11184   + caddc 11187  cn 12293  0cn0 12553   cresub 42341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-resub 42342
This theorem is referenced by:  zaddcom  42428
  Copyright terms: Public domain W3C validator