![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2a | Structured version Visualization version GIF version |
Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.) |
Ref | Expression |
---|---|
swapf1a.o | ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
swapf1a.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
swapf1a.b | ⊢ 𝐵 = (Base‘𝑆) |
swapf1a.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
swapf2a.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
swapf2a.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) |
swapf2a.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
swapf2a | ⊢ (𝜑 → ((𝑋𝑃𝑌)‘𝐹) = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swapf1a.o | . . 3 ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) | |
2 | swapf1a.s | . . 3 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
3 | swapf1a.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
4 | swapf1a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | swapf2a.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | swapf2a.h | . . 3 ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) | |
7 | 1, 2, 3, 4, 5, 6 | swapf2vala 48949 | . 2 ⊢ (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ∪ ◡{𝑓})) |
8 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
9 | 8 | sneqd 4636 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → {𝑓} = {𝐹}) |
10 | 9 | cnveqd 5884 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ◡{𝑓} = ◡{𝐹}) |
11 | 10 | unieqd 4918 | . . 3 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ∪ ◡{𝑓} = ∪ ◡{𝐹}) |
12 | swapf2a.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
13 | 6 | oveqd 7446 | . . . . . . 7 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝑆)𝑌)) |
14 | eqid 2736 | . . . . . . . 8 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
15 | eqid 2736 | . . . . . . . 8 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
16 | eqid 2736 | . . . . . . . 8 ⊢ (Hom ‘𝑆) = (Hom ‘𝑆) | |
17 | 2, 3, 14, 15, 16, 4, 5 | xpchom 18221 | . . . . . . 7 ⊢ (𝜑 → (𝑋(Hom ‘𝑆)𝑌) = (((1st ‘𝑋)(Hom ‘𝐶)(1st ‘𝑌)) × ((2nd ‘𝑋)(Hom ‘𝐷)(2nd ‘𝑌)))) |
18 | 13, 17 | eqtrd 2776 | . . . . . 6 ⊢ (𝜑 → (𝑋𝐻𝑌) = (((1st ‘𝑋)(Hom ‘𝐶)(1st ‘𝑌)) × ((2nd ‘𝑋)(Hom ‘𝐷)(2nd ‘𝑌)))) |
19 | 12, 18 | eleqtrd 2842 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (((1st ‘𝑋)(Hom ‘𝐶)(1st ‘𝑌)) × ((2nd ‘𝑋)(Hom ‘𝐷)(2nd ‘𝑌)))) |
20 | 2nd1st 8059 | . . . . 5 ⊢ (𝐹 ∈ (((1st ‘𝑋)(Hom ‘𝐶)(1st ‘𝑌)) × ((2nd ‘𝑋)(Hom ‘𝐷)(2nd ‘𝑌))) → ∪ ◡{𝐹} = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ ◡{𝐹} = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ∪ ◡{𝐹} = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
23 | 11, 22 | eqtrd 2776 | . 2 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ∪ ◡{𝑓} = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
24 | opex 5467 | . . 3 ⊢ 〈(2nd ‘𝐹), (1st ‘𝐹)〉 ∈ V | |
25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → 〈(2nd ‘𝐹), (1st ‘𝐹)〉 ∈ V) |
26 | 7, 23, 12, 25 | fvmptd 7021 | 1 ⊢ (𝜑 → ((𝑋𝑃𝑌)‘𝐹) = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3479 {csn 4624 〈cop 4630 ∪ cuni 4905 × cxp 5681 ◡ccnv 5682 ‘cfv 6559 (class class class)co 7429 1st c1st 8008 2nd c2nd 8009 Basecbs 17243 Hom chom 17304 ×c cxpc 18209 swapFcswapf 48938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-7 12330 df-8 12331 df-9 12332 df-n0 12523 df-z 12610 df-dec 12730 df-uz 12875 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17244 df-hom 17317 df-cco 17318 df-xpc 18213 df-swapf 48939 |
This theorem is referenced by: swapfcoa 48960 |
Copyright terms: Public domain | W3C validator |