| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2a | Structured version Visualization version GIF version | ||
| Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapf1a.o | ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) |
| swapf1a.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapf1a.b | ⊢ 𝐵 = (Base‘𝑆) |
| swapf1a.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| swapf2a.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| swapf2a.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) |
| swapf2a.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| swapf2a | ⊢ (𝜑 → ((𝑋𝑃𝑌)‘𝐹) = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapf1a.o | . . 3 ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) | |
| 2 | swapf1a.s | . . 3 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 3 | swapf1a.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 4 | swapf1a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | swapf2a.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | swapf2a.h | . . 3 ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) | |
| 7 | 1, 2, 3, 4, 5, 6 | swapf2vala 49275 | . 2 ⊢ (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ∪ ◡{𝑓})) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
| 9 | 8 | sneqd 4591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → {𝑓} = {𝐹}) |
| 10 | 9 | cnveqd 5822 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ◡{𝑓} = ◡{𝐹}) |
| 11 | 10 | unieqd 4874 | . . 3 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ∪ ◡{𝑓} = ∪ ◡{𝐹}) |
| 12 | swapf2a.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 13 | 6 | oveqd 7370 | . . . . . . 7 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝑆)𝑌)) |
| 14 | eqid 2729 | . . . . . . . 8 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 15 | eqid 2729 | . . . . . . . 8 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 16 | eqid 2729 | . . . . . . . 8 ⊢ (Hom ‘𝑆) = (Hom ‘𝑆) | |
| 17 | 2, 3, 14, 15, 16, 4, 5 | xpchom 18105 | . . . . . . 7 ⊢ (𝜑 → (𝑋(Hom ‘𝑆)𝑌) = (((1st ‘𝑋)(Hom ‘𝐶)(1st ‘𝑌)) × ((2nd ‘𝑋)(Hom ‘𝐷)(2nd ‘𝑌)))) |
| 18 | 13, 17 | eqtrd 2764 | . . . . . 6 ⊢ (𝜑 → (𝑋𝐻𝑌) = (((1st ‘𝑋)(Hom ‘𝐶)(1st ‘𝑌)) × ((2nd ‘𝑋)(Hom ‘𝐷)(2nd ‘𝑌)))) |
| 19 | 12, 18 | eleqtrd 2830 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (((1st ‘𝑋)(Hom ‘𝐶)(1st ‘𝑌)) × ((2nd ‘𝑋)(Hom ‘𝐷)(2nd ‘𝑌)))) |
| 20 | 2nd1st 7980 | . . . . 5 ⊢ (𝐹 ∈ (((1st ‘𝑋)(Hom ‘𝐶)(1st ‘𝑌)) × ((2nd ‘𝑋)(Hom ‘𝐷)(2nd ‘𝑌))) → ∪ ◡{𝐹} = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ ◡{𝐹} = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ∪ ◡{𝐹} = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
| 23 | 11, 22 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ∪ ◡{𝑓} = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
| 24 | opex 5411 | . . 3 ⊢ 〈(2nd ‘𝐹), (1st ‘𝐹)〉 ∈ V | |
| 25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → 〈(2nd ‘𝐹), (1st ‘𝐹)〉 ∈ V) |
| 26 | 7, 23, 12, 25 | fvmptd 6941 | 1 ⊢ (𝜑 → ((𝑋𝑃𝑌)‘𝐹) = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 {csn 4579 〈cop 4585 ∪ cuni 4861 × cxp 5621 ◡ccnv 5622 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 Basecbs 17139 Hom chom 17191 ×c cxpc 18093 swapF cswapf 49264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-fz 13430 df-struct 17077 df-slot 17112 df-ndx 17124 df-base 17140 df-hom 17204 df-cco 17205 df-xpc 18097 df-swapf 49265 |
| This theorem is referenced by: swapfcoa 49286 |
| Copyright terms: Public domain | W3C validator |