Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2a Structured version   Visualization version   GIF version

Theorem swapf2a 49432
Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapf1a.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
swapf1a.s 𝑆 = (𝐶 ×c 𝐷)
swapf1a.b 𝐵 = (Base‘𝑆)
swapf1a.x (𝜑𝑋𝐵)
swapf2a.y (𝜑𝑌𝐵)
swapf2a.h (𝜑𝐻 = (Hom ‘𝑆))
swapf2a.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
swapf2a (𝜑 → ((𝑋𝑃𝑌)‘𝐹) = ⟨(2nd𝐹), (1st𝐹)⟩)

Proof of Theorem swapf2a
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 swapf1a.o . . 3 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
2 swapf1a.s . . 3 𝑆 = (𝐶 ×c 𝐷)
3 swapf1a.b . . 3 𝐵 = (Base‘𝑆)
4 swapf1a.x . . 3 (𝜑𝑋𝐵)
5 swapf2a.y . . 3 (𝜑𝑌𝐵)
6 swapf2a.h . . 3 (𝜑𝐻 = (Hom ‘𝑆))
71, 2, 3, 4, 5, 6swapf2vala 49431 . 2 (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
8 simpr 484 . . . . . 6 ((𝜑𝑓 = 𝐹) → 𝑓 = 𝐹)
98sneqd 4589 . . . . 5 ((𝜑𝑓 = 𝐹) → {𝑓} = {𝐹})
109cnveqd 5821 . . . 4 ((𝜑𝑓 = 𝐹) → {𝑓} = {𝐹})
1110unieqd 4873 . . 3 ((𝜑𝑓 = 𝐹) → {𝑓} = {𝐹})
12 swapf2a.f . . . . . 6 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
136oveqd 7372 . . . . . . 7 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝑆)𝑌))
14 eqid 2733 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
15 eqid 2733 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
16 eqid 2733 . . . . . . . 8 (Hom ‘𝑆) = (Hom ‘𝑆)
172, 3, 14, 15, 16, 4, 5xpchom 18094 . . . . . . 7 (𝜑 → (𝑋(Hom ‘𝑆)𝑌) = (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))))
1813, 17eqtrd 2768 . . . . . 6 (𝜑 → (𝑋𝐻𝑌) = (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))))
1912, 18eleqtrd 2835 . . . . 5 (𝜑𝐹 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))))
20 2nd1st 7979 . . . . 5 (𝐹 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) → {𝐹} = ⟨(2nd𝐹), (1st𝐹)⟩)
2119, 20syl 17 . . . 4 (𝜑 {𝐹} = ⟨(2nd𝐹), (1st𝐹)⟩)
2221adantr 480 . . 3 ((𝜑𝑓 = 𝐹) → {𝐹} = ⟨(2nd𝐹), (1st𝐹)⟩)
2311, 22eqtrd 2768 . 2 ((𝜑𝑓 = 𝐹) → {𝑓} = ⟨(2nd𝐹), (1st𝐹)⟩)
24 opex 5409 . . 3 ⟨(2nd𝐹), (1st𝐹)⟩ ∈ V
2524a1i 11 . 2 (𝜑 → ⟨(2nd𝐹), (1st𝐹)⟩ ∈ V)
267, 23, 12, 25fvmptd 6945 1 (𝜑 → ((𝑋𝑃𝑌)‘𝐹) = ⟨(2nd𝐹), (1st𝐹)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4577  cop 4583   cuni 4860   × cxp 5619  ccnv 5620  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  Basecbs 17127  Hom chom 17179   ×c cxpc 18082   swapF cswapf 49420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-hom 17192  df-cco 17193  df-xpc 18086  df-swapf 49421
This theorem is referenced by:  swapfcoa  49442
  Copyright terms: Public domain W3C validator