| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2a | Structured version Visualization version GIF version | ||
| Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapf1a.o | ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) |
| swapf1a.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapf1a.b | ⊢ 𝐵 = (Base‘𝑆) |
| swapf1a.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| swapf2a.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| swapf2a.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) |
| swapf2a.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| swapf2a | ⊢ (𝜑 → ((𝑋𝑃𝑌)‘𝐹) = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapf1a.o | . . 3 ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) | |
| 2 | swapf1a.s | . . 3 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 3 | swapf1a.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 4 | swapf1a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | swapf2a.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | swapf2a.h | . . 3 ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) | |
| 7 | 1, 2, 3, 4, 5, 6 | swapf2vala 49241 | . 2 ⊢ (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ∪ ◡{𝑓})) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
| 9 | 8 | sneqd 4603 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → {𝑓} = {𝐹}) |
| 10 | 9 | cnveqd 5841 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ◡{𝑓} = ◡{𝐹}) |
| 11 | 10 | unieqd 4886 | . . 3 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ∪ ◡{𝑓} = ∪ ◡{𝐹}) |
| 12 | swapf2a.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 13 | 6 | oveqd 7406 | . . . . . . 7 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝑆)𝑌)) |
| 14 | eqid 2730 | . . . . . . . 8 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 15 | eqid 2730 | . . . . . . . 8 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 16 | eqid 2730 | . . . . . . . 8 ⊢ (Hom ‘𝑆) = (Hom ‘𝑆) | |
| 17 | 2, 3, 14, 15, 16, 4, 5 | xpchom 18147 | . . . . . . 7 ⊢ (𝜑 → (𝑋(Hom ‘𝑆)𝑌) = (((1st ‘𝑋)(Hom ‘𝐶)(1st ‘𝑌)) × ((2nd ‘𝑋)(Hom ‘𝐷)(2nd ‘𝑌)))) |
| 18 | 13, 17 | eqtrd 2765 | . . . . . 6 ⊢ (𝜑 → (𝑋𝐻𝑌) = (((1st ‘𝑋)(Hom ‘𝐶)(1st ‘𝑌)) × ((2nd ‘𝑋)(Hom ‘𝐷)(2nd ‘𝑌)))) |
| 19 | 12, 18 | eleqtrd 2831 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (((1st ‘𝑋)(Hom ‘𝐶)(1st ‘𝑌)) × ((2nd ‘𝑋)(Hom ‘𝐷)(2nd ‘𝑌)))) |
| 20 | 2nd1st 8019 | . . . . 5 ⊢ (𝐹 ∈ (((1st ‘𝑋)(Hom ‘𝐶)(1st ‘𝑌)) × ((2nd ‘𝑋)(Hom ‘𝐷)(2nd ‘𝑌))) → ∪ ◡{𝐹} = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ ◡{𝐹} = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ∪ ◡{𝐹} = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
| 23 | 11, 22 | eqtrd 2765 | . 2 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ∪ ◡{𝑓} = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
| 24 | opex 5426 | . . 3 ⊢ 〈(2nd ‘𝐹), (1st ‘𝐹)〉 ∈ V | |
| 25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → 〈(2nd ‘𝐹), (1st ‘𝐹)〉 ∈ V) |
| 26 | 7, 23, 12, 25 | fvmptd 6977 | 1 ⊢ (𝜑 → ((𝑋𝑃𝑌)‘𝐹) = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4591 〈cop 4597 ∪ cuni 4873 × cxp 5638 ◡ccnv 5639 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 2nd c2nd 7969 Basecbs 17185 Hom chom 17237 ×c cxpc 18135 swapF cswapf 49230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-xpc 18139 df-swapf 49231 |
| This theorem is referenced by: swapfcoa 49252 |
| Copyright terms: Public domain | W3C validator |