![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vdumgr0 | Structured version Visualization version GIF version |
Description: A vertex in a multigraph has degree 0 if the graph consists of only one vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 2-Apr-2021.) |
Ref | Expression |
---|---|
vdumgr0.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
vdumgr0 | β’ ((πΊ β UMGraph β§ π β π β§ (β―βπ) = 1) β ((VtxDegβπΊ)βπ) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgruhgr 28631 | . . . 4 β’ (πΊ β UMGraph β πΊ β UHGraph) | |
2 | 1 | 3ad2ant1 1131 | . . 3 β’ ((πΊ β UMGraph β§ π β π β§ (β―βπ) = 1) β πΊ β UHGraph) |
3 | simp3 1136 | . . 3 β’ ((πΊ β UMGraph β§ π β π β§ (β―βπ) = 1) β (β―βπ) = 1) | |
4 | vdumgr0.v | . . . . . 6 β’ π = (VtxβπΊ) | |
5 | eqid 2730 | . . . . . 6 β’ (iEdgβπΊ) = (iEdgβπΊ) | |
6 | 4, 5 | umgrislfupgr 28650 | . . . . 5 β’ (πΊ β UMGraph β (πΊ β UPGraph β§ (iEdgβπΊ):dom (iEdgβπΊ)βΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)})) |
7 | 6 | simprbi 495 | . . . 4 β’ (πΊ β UMGraph β (iEdgβπΊ):dom (iEdgβπΊ)βΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)}) |
8 | 7 | 3ad2ant1 1131 | . . 3 β’ ((πΊ β UMGraph β§ π β π β§ (β―βπ) = 1) β (iEdgβπΊ):dom (iEdgβπΊ)βΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)}) |
9 | 2, 3, 8 | 3jca 1126 | . 2 β’ ((πΊ β UMGraph β§ π β π β§ (β―βπ) = 1) β (πΊ β UHGraph β§ (β―βπ) = 1 β§ (iEdgβπΊ):dom (iEdgβπΊ)βΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)})) |
10 | simp2 1135 | . 2 β’ ((πΊ β UMGraph β§ π β π β§ (β―βπ) = 1) β π β π) | |
11 | eqid 2730 | . . 3 β’ {π₯ β π« π β£ 2 β€ (β―βπ₯)} = {π₯ β π« π β£ 2 β€ (β―βπ₯)} | |
12 | 4, 5, 11 | vtxdlfuhgr1v 29003 | . 2 β’ ((πΊ β UHGraph β§ (β―βπ) = 1 β§ (iEdgβπΊ):dom (iEdgβπΊ)βΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)}) β (π β π β ((VtxDegβπΊ)βπ) = 0)) |
13 | 9, 10, 12 | sylc 65 | 1 β’ ((πΊ β UMGraph β§ π β π β§ (β―βπ) = 1) β ((VtxDegβπΊ)βπ) = 0) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1085 = wceq 1539 β wcel 2104 {crab 3430 π« cpw 4601 class class class wbr 5147 dom cdm 5675 βΆwf 6538 βcfv 6542 0cc0 11112 1c1 11113 β€ cle 11253 2c2 12271 β―chash 14294 Vtxcvtx 28523 iEdgciedg 28524 UHGraphcuhgr 28583 UPGraphcupgr 28607 UMGraphcumgr 28608 VtxDegcvtxdg 28989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-xadd 13097 df-fz 13489 df-hash 14295 df-edg 28575 df-uhgr 28585 df-upgr 28609 df-umgr 28610 df-vtxdg 28990 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |