![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdumgr0nedg | Structured version Visualization version GIF version |
Description: If a vertex in a multigraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by AV, 12-Dec-2020.) (Proof shortened by AV, 15-Dec-2020.) |
Ref | Expression |
---|---|
vtxdushgrfvedg.v | β’ π = (VtxβπΊ) |
vtxdushgrfvedg.e | β’ πΈ = (EdgβπΊ) |
vtxdushgrfvedg.d | β’ π· = (VtxDegβπΊ) |
Ref | Expression |
---|---|
vtxdumgr0nedg | β’ ((πΊ β UMGraph β§ π β π β§ (π·βπ) = 0) β Β¬ βπ£ β π {π, π£} β πΈ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgruhgr 28904 | . 2 β’ (πΊ β UMGraph β πΊ β UHGraph) | |
2 | vtxdushgrfvedg.v | . . 3 β’ π = (VtxβπΊ) | |
3 | vtxdushgrfvedg.e | . . 3 β’ πΈ = (EdgβπΊ) | |
4 | vtxdushgrfvedg.d | . . 3 β’ π· = (VtxDegβπΊ) | |
5 | 2, 3, 4 | vtxduhgr0nedg 29293 | . 2 β’ ((πΊ β UHGraph β§ π β π β§ (π·βπ) = 0) β Β¬ βπ£ β π {π, π£} β πΈ) |
6 | 1, 5 | syl3an1 1161 | 1 β’ ((πΊ β UMGraph β§ π β π β§ (π·βπ) = 0) β Β¬ βπ£ β π {π, π£} β πΈ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ w3a 1085 = wceq 1534 β wcel 2099 βwrex 3065 {cpr 4626 βcfv 6542 0cc0 11130 Vtxcvtx 28796 Edgcedg 28847 UHGraphcuhgr 28856 UMGraphcumgr 28881 VtxDegcvtxdg 29266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-n0 12495 df-xnn0 12567 df-z 12581 df-uz 12845 df-xadd 13117 df-fz 13509 df-hash 14314 df-edg 28848 df-uhgr 28858 df-upgr 28882 df-umgr 28883 df-vtxdg 29267 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |