Proof of Theorem un0addcl
| Step | Hyp | Ref
| Expression |
| 1 | | un0addcl.2 |
. . . . 5
⊢ 𝑇 = (𝑆 ∪ {0}) |
| 2 | 1 | eleq2i 2833 |
. . . 4
⊢ (𝑁 ∈ 𝑇 ↔ 𝑁 ∈ (𝑆 ∪ {0})) |
| 3 | | elun 4153 |
. . . 4
⊢ (𝑁 ∈ (𝑆 ∪ {0}) ↔ (𝑁 ∈ 𝑆 ∨ 𝑁 ∈ {0})) |
| 4 | 2, 3 | bitri 275 |
. . 3
⊢ (𝑁 ∈ 𝑇 ↔ (𝑁 ∈ 𝑆 ∨ 𝑁 ∈ {0})) |
| 5 | 1 | eleq2i 2833 |
. . . . . 6
⊢ (𝑀 ∈ 𝑇 ↔ 𝑀 ∈ (𝑆 ∪ {0})) |
| 6 | | elun 4153 |
. . . . . 6
⊢ (𝑀 ∈ (𝑆 ∪ {0}) ↔ (𝑀 ∈ 𝑆 ∨ 𝑀 ∈ {0})) |
| 7 | 5, 6 | bitri 275 |
. . . . 5
⊢ (𝑀 ∈ 𝑇 ↔ (𝑀 ∈ 𝑆 ∨ 𝑀 ∈ {0})) |
| 8 | | ssun1 4178 |
. . . . . . . . 9
⊢ 𝑆 ⊆ (𝑆 ∪ {0}) |
| 9 | 8, 1 | sseqtrri 4033 |
. . . . . . . 8
⊢ 𝑆 ⊆ 𝑇 |
| 10 | | un0addcl.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → (𝑀 + 𝑁) ∈ 𝑆) |
| 11 | 9, 10 | sselid 3981 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → (𝑀 + 𝑁) ∈ 𝑇) |
| 12 | 11 | expr 456 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑆) → (𝑁 ∈ 𝑆 → (𝑀 + 𝑁) ∈ 𝑇)) |
| 13 | | un0addcl.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 14 | 13 | sselda 3983 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑆) → 𝑁 ∈ ℂ) |
| 15 | 14 | addlidd 11462 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑆) → (0 + 𝑁) = 𝑁) |
| 16 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
| 17 | 16 | sselda 3983 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑆) → 𝑁 ∈ 𝑇) |
| 18 | 15, 17 | eqeltrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑆) → (0 + 𝑁) ∈ 𝑇) |
| 19 | | elsni 4643 |
. . . . . . . . . 10
⊢ (𝑀 ∈ {0} → 𝑀 = 0) |
| 20 | 19 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝑀 ∈ {0} → (𝑀 + 𝑁) = (0 + 𝑁)) |
| 21 | 20 | eleq1d 2826 |
. . . . . . . 8
⊢ (𝑀 ∈ {0} → ((𝑀 + 𝑁) ∈ 𝑇 ↔ (0 + 𝑁) ∈ 𝑇)) |
| 22 | 18, 21 | syl5ibrcom 247 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑆) → (𝑀 ∈ {0} → (𝑀 + 𝑁) ∈ 𝑇)) |
| 23 | 22 | impancom 451 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ {0}) → (𝑁 ∈ 𝑆 → (𝑀 + 𝑁) ∈ 𝑇)) |
| 24 | 12, 23 | jaodan 960 |
. . . . 5
⊢ ((𝜑 ∧ (𝑀 ∈ 𝑆 ∨ 𝑀 ∈ {0})) → (𝑁 ∈ 𝑆 → (𝑀 + 𝑁) ∈ 𝑇)) |
| 25 | 7, 24 | sylan2b 594 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑁 ∈ 𝑆 → (𝑀 + 𝑁) ∈ 𝑇)) |
| 26 | | 0cnd 11254 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℂ) |
| 27 | 26 | snssd 4809 |
. . . . . . . . . 10
⊢ (𝜑 → {0} ⊆
ℂ) |
| 28 | 13, 27 | unssd 4192 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
| 29 | 1, 28 | eqsstrid 4022 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ⊆ ℂ) |
| 30 | 29 | sselda 3983 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → 𝑀 ∈ ℂ) |
| 31 | 30 | addridd 11461 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑀 + 0) = 𝑀) |
| 32 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → 𝑀 ∈ 𝑇) |
| 33 | 31, 32 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑀 + 0) ∈ 𝑇) |
| 34 | | elsni 4643 |
. . . . . . 7
⊢ (𝑁 ∈ {0} → 𝑁 = 0) |
| 35 | 34 | oveq2d 7447 |
. . . . . 6
⊢ (𝑁 ∈ {0} → (𝑀 + 𝑁) = (𝑀 + 0)) |
| 36 | 35 | eleq1d 2826 |
. . . . 5
⊢ (𝑁 ∈ {0} → ((𝑀 + 𝑁) ∈ 𝑇 ↔ (𝑀 + 0) ∈ 𝑇)) |
| 37 | 33, 36 | syl5ibrcom 247 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑁 ∈ {0} → (𝑀 + 𝑁) ∈ 𝑇)) |
| 38 | 25, 37 | jaod 860 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → ((𝑁 ∈ 𝑆 ∨ 𝑁 ∈ {0}) → (𝑀 + 𝑁) ∈ 𝑇)) |
| 39 | 4, 38 | biimtrid 242 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑁 ∈ 𝑇 → (𝑀 + 𝑁) ∈ 𝑇)) |
| 40 | 39 | impr 454 |
1
⊢ ((𝜑 ∧ (𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇)) → (𝑀 + 𝑁) ∈ 𝑇) |