Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  un0addcl Structured version   Visualization version   GIF version

 Description: If 𝑆 is closed under addition, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1 (𝜑𝑆 ⊆ ℂ)
un0addcl.2 𝑇 = (𝑆 ∪ {0})
un0addcl.3 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑆)
Assertion
Ref Expression
un0addcl ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 + 𝑁) ∈ 𝑇)

Proof of Theorem un0addcl
StepHypRef Expression
1 un0addcl.2 . . . . 5 𝑇 = (𝑆 ∪ {0})
21eleq2i 2881 . . . 4 (𝑁𝑇𝑁 ∈ (𝑆 ∪ {0}))
3 elun 4076 . . . 4 (𝑁 ∈ (𝑆 ∪ {0}) ↔ (𝑁𝑆𝑁 ∈ {0}))
42, 3bitri 278 . . 3 (𝑁𝑇 ↔ (𝑁𝑆𝑁 ∈ {0}))
51eleq2i 2881 . . . . . 6 (𝑀𝑇𝑀 ∈ (𝑆 ∪ {0}))
6 elun 4076 . . . . . 6 (𝑀 ∈ (𝑆 ∪ {0}) ↔ (𝑀𝑆𝑀 ∈ {0}))
75, 6bitri 278 . . . . 5 (𝑀𝑇 ↔ (𝑀𝑆𝑀 ∈ {0}))
8 ssun1 4099 . . . . . . . . 9 𝑆 ⊆ (𝑆 ∪ {0})
98, 1sseqtrri 3952 . . . . . . . 8 𝑆𝑇
10 un0addcl.3 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑆)
119, 10sseldi 3913 . . . . . . 7 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑇)
1211expr 460 . . . . . 6 ((𝜑𝑀𝑆) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
13 un0addcl.1 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
1413sselda 3915 . . . . . . . . . 10 ((𝜑𝑁𝑆) → 𝑁 ∈ ℂ)
1514addid2d 10833 . . . . . . . . 9 ((𝜑𝑁𝑆) → (0 + 𝑁) = 𝑁)
169a1i 11 . . . . . . . . . 10 (𝜑𝑆𝑇)
1716sselda 3915 . . . . . . . . 9 ((𝜑𝑁𝑆) → 𝑁𝑇)
1815, 17eqeltrd 2890 . . . . . . . 8 ((𝜑𝑁𝑆) → (0 + 𝑁) ∈ 𝑇)
19 elsni 4542 . . . . . . . . . 10 (𝑀 ∈ {0} → 𝑀 = 0)
2019oveq1d 7151 . . . . . . . . 9 (𝑀 ∈ {0} → (𝑀 + 𝑁) = (0 + 𝑁))
2120eleq1d 2874 . . . . . . . 8 (𝑀 ∈ {0} → ((𝑀 + 𝑁) ∈ 𝑇 ↔ (0 + 𝑁) ∈ 𝑇))
2218, 21syl5ibrcom 250 . . . . . . 7 ((𝜑𝑁𝑆) → (𝑀 ∈ {0} → (𝑀 + 𝑁) ∈ 𝑇))
2322impancom 455 . . . . . 6 ((𝜑𝑀 ∈ {0}) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
2412, 23jaodan 955 . . . . 5 ((𝜑 ∧ (𝑀𝑆𝑀 ∈ {0})) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
257, 24sylan2b 596 . . . 4 ((𝜑𝑀𝑇) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
26 0cnd 10626 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
2726snssd 4702 . . . . . . . . . 10 (𝜑 → {0} ⊆ ℂ)
2813, 27unssd 4113 . . . . . . . . 9 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
291, 28eqsstrid 3963 . . . . . . . 8 (𝜑𝑇 ⊆ ℂ)
3029sselda 3915 . . . . . . 7 ((𝜑𝑀𝑇) → 𝑀 ∈ ℂ)
3130addid1d 10832 . . . . . 6 ((𝜑𝑀𝑇) → (𝑀 + 0) = 𝑀)
32 simpr 488 . . . . . 6 ((𝜑𝑀𝑇) → 𝑀𝑇)
3331, 32eqeltrd 2890 . . . . 5 ((𝜑𝑀𝑇) → (𝑀 + 0) ∈ 𝑇)
34 elsni 4542 . . . . . . 7 (𝑁 ∈ {0} → 𝑁 = 0)
3534oveq2d 7152 . . . . . 6 (𝑁 ∈ {0} → (𝑀 + 𝑁) = (𝑀 + 0))
3635eleq1d 2874 . . . . 5 (𝑁 ∈ {0} → ((𝑀 + 𝑁) ∈ 𝑇 ↔ (𝑀 + 0) ∈ 𝑇))
3733, 36syl5ibrcom 250 . . . 4 ((𝜑𝑀𝑇) → (𝑁 ∈ {0} → (𝑀 + 𝑁) ∈ 𝑇))
3825, 37jaod 856 . . 3 ((𝜑𝑀𝑇) → ((𝑁𝑆𝑁 ∈ {0}) → (𝑀 + 𝑁) ∈ 𝑇))
394, 38syl5bi 245 . 2 ((𝜑𝑀𝑇) → (𝑁𝑇 → (𝑀 + 𝑁) ∈ 𝑇))
4039impr 458 1 ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 + 𝑁) ∈ 𝑇)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111   ∪ cun 3879   ⊆ wss 3881  {csn 4525  (class class class)co 7136  ℂcc 10527  0cc0 10529   + caddc 10532 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-po 5439  df-so 5440  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-ov 7139  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10669  df-mnf 10670  df-ltxr 10672 This theorem is referenced by:  nn0addcl  11923  plyaddlem  24822  plymullem  24823
 Copyright terms: Public domain W3C validator