MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un0addcl Structured version   Visualization version   GIF version

Theorem un0addcl 12425
Description: If 𝑆 is closed under addition, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1 (𝜑𝑆 ⊆ ℂ)
un0addcl.2 𝑇 = (𝑆 ∪ {0})
un0addcl.3 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑆)
Assertion
Ref Expression
un0addcl ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 + 𝑁) ∈ 𝑇)

Proof of Theorem un0addcl
StepHypRef Expression
1 un0addcl.2 . . . . 5 𝑇 = (𝑆 ∪ {0})
21eleq2i 2825 . . . 4 (𝑁𝑇𝑁 ∈ (𝑆 ∪ {0}))
3 elun 4102 . . . 4 (𝑁 ∈ (𝑆 ∪ {0}) ↔ (𝑁𝑆𝑁 ∈ {0}))
42, 3bitri 275 . . 3 (𝑁𝑇 ↔ (𝑁𝑆𝑁 ∈ {0}))
51eleq2i 2825 . . . . . 6 (𝑀𝑇𝑀 ∈ (𝑆 ∪ {0}))
6 elun 4102 . . . . . 6 (𝑀 ∈ (𝑆 ∪ {0}) ↔ (𝑀𝑆𝑀 ∈ {0}))
75, 6bitri 275 . . . . 5 (𝑀𝑇 ↔ (𝑀𝑆𝑀 ∈ {0}))
8 ssun1 4127 . . . . . . . . 9 𝑆 ⊆ (𝑆 ∪ {0})
98, 1sseqtrri 3980 . . . . . . . 8 𝑆𝑇
10 un0addcl.3 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑆)
119, 10sselid 3928 . . . . . . 7 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑇)
1211expr 456 . . . . . 6 ((𝜑𝑀𝑆) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
13 un0addcl.1 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
1413sselda 3930 . . . . . . . . . 10 ((𝜑𝑁𝑆) → 𝑁 ∈ ℂ)
1514addlidd 11325 . . . . . . . . 9 ((𝜑𝑁𝑆) → (0 + 𝑁) = 𝑁)
169a1i 11 . . . . . . . . . 10 (𝜑𝑆𝑇)
1716sselda 3930 . . . . . . . . 9 ((𝜑𝑁𝑆) → 𝑁𝑇)
1815, 17eqeltrd 2833 . . . . . . . 8 ((𝜑𝑁𝑆) → (0 + 𝑁) ∈ 𝑇)
19 elsni 4594 . . . . . . . . . 10 (𝑀 ∈ {0} → 𝑀 = 0)
2019oveq1d 7370 . . . . . . . . 9 (𝑀 ∈ {0} → (𝑀 + 𝑁) = (0 + 𝑁))
2120eleq1d 2818 . . . . . . . 8 (𝑀 ∈ {0} → ((𝑀 + 𝑁) ∈ 𝑇 ↔ (0 + 𝑁) ∈ 𝑇))
2218, 21syl5ibrcom 247 . . . . . . 7 ((𝜑𝑁𝑆) → (𝑀 ∈ {0} → (𝑀 + 𝑁) ∈ 𝑇))
2322impancom 451 . . . . . 6 ((𝜑𝑀 ∈ {0}) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
2412, 23jaodan 959 . . . . 5 ((𝜑 ∧ (𝑀𝑆𝑀 ∈ {0})) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
257, 24sylan2b 594 . . . 4 ((𝜑𝑀𝑇) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
26 0cnd 11116 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
2726snssd 4762 . . . . . . . . . 10 (𝜑 → {0} ⊆ ℂ)
2813, 27unssd 4141 . . . . . . . . 9 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
291, 28eqsstrid 3969 . . . . . . . 8 (𝜑𝑇 ⊆ ℂ)
3029sselda 3930 . . . . . . 7 ((𝜑𝑀𝑇) → 𝑀 ∈ ℂ)
3130addridd 11324 . . . . . 6 ((𝜑𝑀𝑇) → (𝑀 + 0) = 𝑀)
32 simpr 484 . . . . . 6 ((𝜑𝑀𝑇) → 𝑀𝑇)
3331, 32eqeltrd 2833 . . . . 5 ((𝜑𝑀𝑇) → (𝑀 + 0) ∈ 𝑇)
34 elsni 4594 . . . . . . 7 (𝑁 ∈ {0} → 𝑁 = 0)
3534oveq2d 7371 . . . . . 6 (𝑁 ∈ {0} → (𝑀 + 𝑁) = (𝑀 + 0))
3635eleq1d 2818 . . . . 5 (𝑁 ∈ {0} → ((𝑀 + 𝑁) ∈ 𝑇 ↔ (𝑀 + 0) ∈ 𝑇))
3733, 36syl5ibrcom 247 . . . 4 ((𝜑𝑀𝑇) → (𝑁 ∈ {0} → (𝑀 + 𝑁) ∈ 𝑇))
3825, 37jaod 859 . . 3 ((𝜑𝑀𝑇) → ((𝑁𝑆𝑁 ∈ {0}) → (𝑀 + 𝑁) ∈ 𝑇))
394, 38biimtrid 242 . 2 ((𝜑𝑀𝑇) → (𝑁𝑇 → (𝑀 + 𝑁) ∈ 𝑇))
4039impr 454 1 ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 + 𝑁) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  cun 3896  wss 3898  {csn 4577  (class class class)co 7355  cc 11015  0cc0 11017   + caddc 11020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-ltxr 11162
This theorem is referenced by:  nn0addcl  12427  plyaddlem  26167  plymullem  26168
  Copyright terms: Public domain W3C validator