Proof of Theorem un0mulcl
| Step | Hyp | Ref
| Expression |
| 1 | | un0addcl.2 |
. . . . 5
⊢ 𝑇 = (𝑆 ∪ {0}) |
| 2 | 1 | eleq2i 2827 |
. . . 4
⊢ (𝑁 ∈ 𝑇 ↔ 𝑁 ∈ (𝑆 ∪ {0})) |
| 3 | | elun 4133 |
. . . 4
⊢ (𝑁 ∈ (𝑆 ∪ {0}) ↔ (𝑁 ∈ 𝑆 ∨ 𝑁 ∈ {0})) |
| 4 | 2, 3 | bitri 275 |
. . 3
⊢ (𝑁 ∈ 𝑇 ↔ (𝑁 ∈ 𝑆 ∨ 𝑁 ∈ {0})) |
| 5 | 1 | eleq2i 2827 |
. . . . . 6
⊢ (𝑀 ∈ 𝑇 ↔ 𝑀 ∈ (𝑆 ∪ {0})) |
| 6 | | elun 4133 |
. . . . . 6
⊢ (𝑀 ∈ (𝑆 ∪ {0}) ↔ (𝑀 ∈ 𝑆 ∨ 𝑀 ∈ {0})) |
| 7 | 5, 6 | bitri 275 |
. . . . 5
⊢ (𝑀 ∈ 𝑇 ↔ (𝑀 ∈ 𝑆 ∨ 𝑀 ∈ {0})) |
| 8 | | ssun1 4158 |
. . . . . . . . 9
⊢ 𝑆 ⊆ (𝑆 ∪ {0}) |
| 9 | 8, 1 | sseqtrri 4013 |
. . . . . . . 8
⊢ 𝑆 ⊆ 𝑇 |
| 10 | | un0mulcl.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → (𝑀 · 𝑁) ∈ 𝑆) |
| 11 | 9, 10 | sselid 3961 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → (𝑀 · 𝑁) ∈ 𝑇) |
| 12 | 11 | expr 456 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑆) → (𝑁 ∈ 𝑆 → (𝑀 · 𝑁) ∈ 𝑇)) |
| 13 | | un0addcl.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 14 | 13 | sselda 3963 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑆) → 𝑁 ∈ ℂ) |
| 15 | 14 | mul02d 11438 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑆) → (0 · 𝑁) = 0) |
| 16 | | ssun2 4159 |
. . . . . . . . . . 11
⊢ {0}
⊆ (𝑆 ∪
{0}) |
| 17 | 16, 1 | sseqtrri 4013 |
. . . . . . . . . 10
⊢ {0}
⊆ 𝑇 |
| 18 | | c0ex 11234 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
| 19 | 18 | snss 4766 |
. . . . . . . . . 10
⊢ (0 ∈
𝑇 ↔ {0} ⊆ 𝑇) |
| 20 | 17, 19 | mpbir 231 |
. . . . . . . . 9
⊢ 0 ∈
𝑇 |
| 21 | 15, 20 | eqeltrdi 2843 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑆) → (0 · 𝑁) ∈ 𝑇) |
| 22 | | elsni 4623 |
. . . . . . . . . 10
⊢ (𝑀 ∈ {0} → 𝑀 = 0) |
| 23 | 22 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝑀 ∈ {0} → (𝑀 · 𝑁) = (0 · 𝑁)) |
| 24 | 23 | eleq1d 2820 |
. . . . . . . 8
⊢ (𝑀 ∈ {0} → ((𝑀 · 𝑁) ∈ 𝑇 ↔ (0 · 𝑁) ∈ 𝑇)) |
| 25 | 21, 24 | syl5ibrcom 247 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑆) → (𝑀 ∈ {0} → (𝑀 · 𝑁) ∈ 𝑇)) |
| 26 | 25 | impancom 451 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ {0}) → (𝑁 ∈ 𝑆 → (𝑀 · 𝑁) ∈ 𝑇)) |
| 27 | 12, 26 | jaodan 959 |
. . . . 5
⊢ ((𝜑 ∧ (𝑀 ∈ 𝑆 ∨ 𝑀 ∈ {0})) → (𝑁 ∈ 𝑆 → (𝑀 · 𝑁) ∈ 𝑇)) |
| 28 | 7, 27 | sylan2b 594 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑁 ∈ 𝑆 → (𝑀 · 𝑁) ∈ 𝑇)) |
| 29 | | 0cnd 11233 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℂ) |
| 30 | 29 | snssd 4790 |
. . . . . . . . . 10
⊢ (𝜑 → {0} ⊆
ℂ) |
| 31 | 13, 30 | unssd 4172 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
| 32 | 1, 31 | eqsstrid 4002 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ⊆ ℂ) |
| 33 | 32 | sselda 3963 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → 𝑀 ∈ ℂ) |
| 34 | 33 | mul01d 11439 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑀 · 0) = 0) |
| 35 | 34, 20 | eqeltrdi 2843 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑀 · 0) ∈ 𝑇) |
| 36 | | elsni 4623 |
. . . . . . 7
⊢ (𝑁 ∈ {0} → 𝑁 = 0) |
| 37 | 36 | oveq2d 7426 |
. . . . . 6
⊢ (𝑁 ∈ {0} → (𝑀 · 𝑁) = (𝑀 · 0)) |
| 38 | 37 | eleq1d 2820 |
. . . . 5
⊢ (𝑁 ∈ {0} → ((𝑀 · 𝑁) ∈ 𝑇 ↔ (𝑀 · 0) ∈ 𝑇)) |
| 39 | 35, 38 | syl5ibrcom 247 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑁 ∈ {0} → (𝑀 · 𝑁) ∈ 𝑇)) |
| 40 | 28, 39 | jaod 859 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → ((𝑁 ∈ 𝑆 ∨ 𝑁 ∈ {0}) → (𝑀 · 𝑁) ∈ 𝑇)) |
| 41 | 4, 40 | biimtrid 242 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑁 ∈ 𝑇 → (𝑀 · 𝑁) ∈ 𝑇)) |
| 42 | 41 | impr 454 |
1
⊢ ((𝜑 ∧ (𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇)) → (𝑀 · 𝑁) ∈ 𝑇) |