Proof of Theorem un0mulcl
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | un0addcl.2 | . . . . 5
⊢ 𝑇 = (𝑆 ∪ {0}) | 
| 2 | 1 | eleq2i 2833 | . . . 4
⊢ (𝑁 ∈ 𝑇 ↔ 𝑁 ∈ (𝑆 ∪ {0})) | 
| 3 |  | elun 4153 | . . . 4
⊢ (𝑁 ∈ (𝑆 ∪ {0}) ↔ (𝑁 ∈ 𝑆 ∨ 𝑁 ∈ {0})) | 
| 4 | 2, 3 | bitri 275 | . . 3
⊢ (𝑁 ∈ 𝑇 ↔ (𝑁 ∈ 𝑆 ∨ 𝑁 ∈ {0})) | 
| 5 | 1 | eleq2i 2833 | . . . . . 6
⊢ (𝑀 ∈ 𝑇 ↔ 𝑀 ∈ (𝑆 ∪ {0})) | 
| 6 |  | elun 4153 | . . . . . 6
⊢ (𝑀 ∈ (𝑆 ∪ {0}) ↔ (𝑀 ∈ 𝑆 ∨ 𝑀 ∈ {0})) | 
| 7 | 5, 6 | bitri 275 | . . . . 5
⊢ (𝑀 ∈ 𝑇 ↔ (𝑀 ∈ 𝑆 ∨ 𝑀 ∈ {0})) | 
| 8 |  | ssun1 4178 | . . . . . . . . 9
⊢ 𝑆 ⊆ (𝑆 ∪ {0}) | 
| 9 | 8, 1 | sseqtrri 4033 | . . . . . . . 8
⊢ 𝑆 ⊆ 𝑇 | 
| 10 |  | un0mulcl.3 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → (𝑀 · 𝑁) ∈ 𝑆) | 
| 11 | 9, 10 | sselid 3981 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → (𝑀 · 𝑁) ∈ 𝑇) | 
| 12 | 11 | expr 456 | . . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑆) → (𝑁 ∈ 𝑆 → (𝑀 · 𝑁) ∈ 𝑇)) | 
| 13 |  | un0addcl.1 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ⊆ ℂ) | 
| 14 | 13 | sselda 3983 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑆) → 𝑁 ∈ ℂ) | 
| 15 | 14 | mul02d 11459 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑆) → (0 · 𝑁) = 0) | 
| 16 |  | ssun2 4179 | . . . . . . . . . . 11
⊢ {0}
⊆ (𝑆 ∪
{0}) | 
| 17 | 16, 1 | sseqtrri 4033 | . . . . . . . . . 10
⊢ {0}
⊆ 𝑇 | 
| 18 |  | c0ex 11255 | . . . . . . . . . . 11
⊢ 0 ∈
V | 
| 19 | 18 | snss 4785 | . . . . . . . . . 10
⊢ (0 ∈
𝑇 ↔ {0} ⊆ 𝑇) | 
| 20 | 17, 19 | mpbir 231 | . . . . . . . . 9
⊢ 0 ∈
𝑇 | 
| 21 | 15, 20 | eqeltrdi 2849 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑆) → (0 · 𝑁) ∈ 𝑇) | 
| 22 |  | elsni 4643 | . . . . . . . . . 10
⊢ (𝑀 ∈ {0} → 𝑀 = 0) | 
| 23 | 22 | oveq1d 7446 | . . . . . . . . 9
⊢ (𝑀 ∈ {0} → (𝑀 · 𝑁) = (0 · 𝑁)) | 
| 24 | 23 | eleq1d 2826 | . . . . . . . 8
⊢ (𝑀 ∈ {0} → ((𝑀 · 𝑁) ∈ 𝑇 ↔ (0 · 𝑁) ∈ 𝑇)) | 
| 25 | 21, 24 | syl5ibrcom 247 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑆) → (𝑀 ∈ {0} → (𝑀 · 𝑁) ∈ 𝑇)) | 
| 26 | 25 | impancom 451 | . . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ {0}) → (𝑁 ∈ 𝑆 → (𝑀 · 𝑁) ∈ 𝑇)) | 
| 27 | 12, 26 | jaodan 960 | . . . . 5
⊢ ((𝜑 ∧ (𝑀 ∈ 𝑆 ∨ 𝑀 ∈ {0})) → (𝑁 ∈ 𝑆 → (𝑀 · 𝑁) ∈ 𝑇)) | 
| 28 | 7, 27 | sylan2b 594 | . . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑁 ∈ 𝑆 → (𝑀 · 𝑁) ∈ 𝑇)) | 
| 29 |  | 0cnd 11254 | . . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℂ) | 
| 30 | 29 | snssd 4809 | . . . . . . . . . 10
⊢ (𝜑 → {0} ⊆
ℂ) | 
| 31 | 13, 30 | unssd 4192 | . . . . . . . . 9
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) | 
| 32 | 1, 31 | eqsstrid 4022 | . . . . . . . 8
⊢ (𝜑 → 𝑇 ⊆ ℂ) | 
| 33 | 32 | sselda 3983 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → 𝑀 ∈ ℂ) | 
| 34 | 33 | mul01d 11460 | . . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑀 · 0) = 0) | 
| 35 | 34, 20 | eqeltrdi 2849 | . . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑀 · 0) ∈ 𝑇) | 
| 36 |  | elsni 4643 | . . . . . . 7
⊢ (𝑁 ∈ {0} → 𝑁 = 0) | 
| 37 | 36 | oveq2d 7447 | . . . . . 6
⊢ (𝑁 ∈ {0} → (𝑀 · 𝑁) = (𝑀 · 0)) | 
| 38 | 37 | eleq1d 2826 | . . . . 5
⊢ (𝑁 ∈ {0} → ((𝑀 · 𝑁) ∈ 𝑇 ↔ (𝑀 · 0) ∈ 𝑇)) | 
| 39 | 35, 38 | syl5ibrcom 247 | . . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑁 ∈ {0} → (𝑀 · 𝑁) ∈ 𝑇)) | 
| 40 | 28, 39 | jaod 860 | . . 3
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → ((𝑁 ∈ 𝑆 ∨ 𝑁 ∈ {0}) → (𝑀 · 𝑁) ∈ 𝑇)) | 
| 41 | 4, 40 | biimtrid 242 | . 2
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑇) → (𝑁 ∈ 𝑇 → (𝑀 · 𝑁) ∈ 𝑇)) | 
| 42 | 41 | impr 454 | 1
⊢ ((𝜑 ∧ (𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇)) → (𝑀 · 𝑁) ∈ 𝑇) |