![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infunabs | Structured version Visualization version GIF version |
Description: An infinite set is equinumerous to its union with a smaller one. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infunabs | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1127 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ∈ dom card) | |
2 | reldom 8247 | . . . . . 6 ⊢ Rel ≼ | |
3 | 2 | brrelex1i 5406 | . . . . 5 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ∈ V) |
4 | 3 | 3ad2ant3 1126 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ V) |
5 | uncdadom 9328 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵)) | |
6 | 1, 4, 5 | syl2anc 579 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵)) |
7 | infcdaabs 9363 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 +𝑐 𝐵) ≈ 𝐴) | |
8 | domentr 8300 | . . 3 ⊢ (((𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵) ∧ (𝐴 +𝑐 𝐵) ≈ 𝐴) → (𝐴 ∪ 𝐵) ≼ 𝐴) | |
9 | 6, 7, 8 | syl2anc 579 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≼ 𝐴) |
10 | unexg 7236 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | |
11 | 1, 4, 10 | syl2anc 579 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ∈ V) |
12 | ssun1 3999 | . . 3 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
13 | ssdomg 8287 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ⊆ (𝐴 ∪ 𝐵) → 𝐴 ≼ (𝐴 ∪ 𝐵))) | |
14 | 11, 12, 13 | mpisyl 21 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≼ (𝐴 ∪ 𝐵)) |
15 | sbth 8368 | . 2 ⊢ (((𝐴 ∪ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ∪ 𝐵)) → (𝐴 ∪ 𝐵) ≈ 𝐴) | |
16 | 9, 14, 15 | syl2anc 579 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 ∈ wcel 2107 Vcvv 3398 ∪ cun 3790 ⊆ wss 3792 class class class wbr 4886 dom cdm 5355 (class class class)co 6922 ωcom 7343 ≈ cen 8238 ≼ cdom 8239 cardccrd 9094 +𝑐 ccda 9324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-oi 8704 df-card 9098 df-cda 9325 |
This theorem is referenced by: infunsdom1 9370 infxp 9372 |
Copyright terms: Public domain | W3C validator |