Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ficardun2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of ficardun2 9889 as of 3-Jul-2024. (Contributed by Mario Carneiro, 5-Feb-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ficardun2OLD | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undjudom 9854 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) | |
2 | finnum 9637 | . . . . 5 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | |
3 | finnum 9637 | . . . . 5 ⊢ (𝐵 ∈ Fin → 𝐵 ∈ dom card) | |
4 | cardadju 9881 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) | |
5 | 2, 3, 4 | syl2an 595 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) |
6 | domentr 8754 | . . . 4 ⊢ (((𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵) ∧ (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) → (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵))) | |
7 | 1, 5, 6 | syl2anc 583 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵))) |
8 | unfi 8917 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
9 | finnum 9637 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → (𝐴 ∪ 𝐵) ∈ dom card) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ dom card) |
11 | ficardom 9650 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | |
12 | ficardom 9650 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ∈ ω) | |
13 | nnacl 8404 | . . . . . 6 ⊢ (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω) | |
14 | 11, 12, 13 | syl2an 595 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω) |
15 | nnon 7693 | . . . . 5 ⊢ (((card‘𝐴) +o (card‘𝐵)) ∈ ω → ((card‘𝐴) +o (card‘𝐵)) ∈ On) | |
16 | onenon 9638 | . . . . 5 ⊢ (((card‘𝐴) +o (card‘𝐵)) ∈ On → ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) | |
17 | 14, 15, 16 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) |
18 | carddom2 9666 | . . . 4 ⊢ (((𝐴 ∪ 𝐵) ∈ dom card ∧ ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) → ((card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))) ↔ (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵)))) | |
19 | 10, 17, 18 | syl2anc 583 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))) ↔ (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵)))) |
20 | 7, 19 | mpbird 256 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵)))) |
21 | cardnn 9652 | . . 3 ⊢ (((card‘𝐴) +o (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) | |
22 | 14, 21 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) |
23 | 20, 22 | sseqtrd 3957 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 class class class wbr 5070 dom cdm 5580 Oncon0 6251 ‘cfv 6418 (class class class)co 7255 ωcom 7687 +o coa 8264 ≈ cen 8688 ≼ cdom 8689 Fincfn 8691 ⊔ cdju 9587 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |