MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardun2 Structured version   Visualization version   GIF version

Theorem ficardun2 10221
Description: The cardinality of the union of finite sets is at most the ordinal sum of their cardinalities. (Contributed by Mario Carneiro, 5-Feb-2013.) Avoid ax-rep 5254. (Revised by BTernaryTau, 3-Jul-2024.)
Assertion
Ref Expression
ficardun2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵)))

Proof of Theorem ficardun2
StepHypRef Expression
1 undjudom 10187 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≼ (𝐴𝐵))
2 ficardadju 10219 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
3 domentr 9032 . . . 4 (((𝐴𝐵) ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) → (𝐴𝐵) ≼ ((card‘𝐴) +o (card‘𝐵)))
41, 2, 3syl2anc 584 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≼ ((card‘𝐴) +o (card‘𝐵)))
5 unfi 9190 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
6 finnum 9967 . . . . 5 ((𝐴𝐵) ∈ Fin → (𝐴𝐵) ∈ dom card)
75, 6syl 17 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ dom card)
8 ficardom 9980 . . . . . 6 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
9 ficardom 9980 . . . . . 6 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
10 nnacl 8628 . . . . . 6 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω)
118, 9, 10syl2an 596 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω)
12 nnon 7872 . . . . 5 (((card‘𝐴) +o (card‘𝐵)) ∈ ω → ((card‘𝐴) +o (card‘𝐵)) ∈ On)
13 onenon 9968 . . . . 5 (((card‘𝐴) +o (card‘𝐵)) ∈ On → ((card‘𝐴) +o (card‘𝐵)) ∈ dom card)
1411, 12, 133syl 18 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ∈ dom card)
15 carddom2 9996 . . . 4 (((𝐴𝐵) ∈ dom card ∧ ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) → ((card‘(𝐴𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))) ↔ (𝐴𝐵) ≼ ((card‘𝐴) +o (card‘𝐵))))
167, 14, 15syl2anc 584 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘(𝐴𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))) ↔ (𝐴𝐵) ≼ ((card‘𝐴) +o (card‘𝐵))))
174, 16mpbird 257 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))))
18 cardnn 9982 . . 3 (((card‘𝐴) +o (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
1911, 18syl 17 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
2017, 19sseqtrd 4000 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cun 3929  wss 3931   class class class wbr 5124  dom cdm 5659  Oncon0 6357  cfv 6536  (class class class)co 7410  ωcom 7866   +o coa 8482  cen 8961  cdom 8962  Fincfn 8964  cdju 9917  cardccrd 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator