| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ficardun2 | Structured version Visualization version GIF version | ||
| Description: The cardinality of the union of finite sets is at most the ordinal sum of their cardinalities. (Contributed by Mario Carneiro, 5-Feb-2013.) Avoid ax-rep 5237. (Revised by BTernaryTau, 3-Jul-2024.) |
| Ref | Expression |
|---|---|
| ficardun2 | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undjudom 10128 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) | |
| 2 | ficardadju 10160 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) | |
| 3 | domentr 8987 | . . . 4 ⊢ (((𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵) ∧ (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) → (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵))) |
| 5 | unfi 9141 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
| 6 | finnum 9908 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → (𝐴 ∪ 𝐵) ∈ dom card) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ dom card) |
| 8 | ficardom 9921 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | |
| 9 | ficardom 9921 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ∈ ω) | |
| 10 | nnacl 8578 | . . . . . 6 ⊢ (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω) | |
| 11 | 8, 9, 10 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω) |
| 12 | nnon 7851 | . . . . 5 ⊢ (((card‘𝐴) +o (card‘𝐵)) ∈ ω → ((card‘𝐴) +o (card‘𝐵)) ∈ On) | |
| 13 | onenon 9909 | . . . . 5 ⊢ (((card‘𝐴) +o (card‘𝐵)) ∈ On → ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) | |
| 14 | 11, 12, 13 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) |
| 15 | carddom2 9937 | . . . 4 ⊢ (((𝐴 ∪ 𝐵) ∈ dom card ∧ ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) → ((card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))) ↔ (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵)))) | |
| 16 | 7, 14, 15 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))) ↔ (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵)))) |
| 17 | 4, 16 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵)))) |
| 18 | cardnn 9923 | . . 3 ⊢ (((card‘𝐴) +o (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) | |
| 19 | 11, 18 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) |
| 20 | 17, 19 | sseqtrd 3986 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ⊆ wss 3917 class class class wbr 5110 dom cdm 5641 Oncon0 6335 ‘cfv 6514 (class class class)co 7390 ωcom 7845 +o coa 8434 ≈ cen 8918 ≼ cdom 8919 Fincfn 8921 ⊔ cdju 9858 cardccrd 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |