![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ficardun2 | Structured version Visualization version GIF version |
Description: The cardinality of the union of finite sets is at most the ordinal sum of their cardinalities. (Contributed by Mario Carneiro, 5-Feb-2013.) |
Ref | Expression |
---|---|
ficardun2 | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ ((card‘𝐴) +𝑜 (card‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncdadom 9281 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵)) | |
2 | finnum 9060 | . . . . 5 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | |
3 | finnum 9060 | . . . . 5 ⊢ (𝐵 ∈ Fin → 𝐵 ∈ dom card) | |
4 | cardacda 9308 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +𝑜 (card‘𝐵))) | |
5 | 2, 3, 4 | syl2an 590 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +𝑜 (card‘𝐵))) |
6 | domentr 8254 | . . . 4 ⊢ (((𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵) ∧ (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +𝑜 (card‘𝐵))) → (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +𝑜 (card‘𝐵))) | |
7 | 1, 5, 6 | syl2anc 580 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +𝑜 (card‘𝐵))) |
8 | unfi 8469 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
9 | finnum 9060 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → (𝐴 ∪ 𝐵) ∈ dom card) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ dom card) |
11 | ficardom 9073 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | |
12 | ficardom 9073 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ∈ ω) | |
13 | nnacl 7931 | . . . . . 6 ⊢ (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +𝑜 (card‘𝐵)) ∈ ω) | |
14 | 11, 12, 13 | syl2an 590 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +𝑜 (card‘𝐵)) ∈ ω) |
15 | nnon 7305 | . . . . 5 ⊢ (((card‘𝐴) +𝑜 (card‘𝐵)) ∈ ω → ((card‘𝐴) +𝑜 (card‘𝐵)) ∈ On) | |
16 | onenon 9061 | . . . . 5 ⊢ (((card‘𝐴) +𝑜 (card‘𝐵)) ∈ On → ((card‘𝐴) +𝑜 (card‘𝐵)) ∈ dom card) | |
17 | 14, 15, 16 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +𝑜 (card‘𝐵)) ∈ dom card) |
18 | carddom2 9089 | . . . 4 ⊢ (((𝐴 ∪ 𝐵) ∈ dom card ∧ ((card‘𝐴) +𝑜 (card‘𝐵)) ∈ dom card) → ((card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +𝑜 (card‘𝐵))) ↔ (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +𝑜 (card‘𝐵)))) | |
19 | 10, 17, 18 | syl2anc 580 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +𝑜 (card‘𝐵))) ↔ (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +𝑜 (card‘𝐵)))) |
20 | 7, 19 | mpbird 249 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +𝑜 (card‘𝐵)))) |
21 | cardnn 9075 | . . 3 ⊢ (((card‘𝐴) +𝑜 (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = ((card‘𝐴) +𝑜 (card‘𝐵))) | |
22 | 14, 21 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = ((card‘𝐴) +𝑜 (card‘𝐵))) |
23 | 20, 22 | sseqtrd 3837 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ ((card‘𝐴) +𝑜 (card‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∪ cun 3767 ⊆ wss 3769 class class class wbr 4843 dom cdm 5312 Oncon0 5941 ‘cfv 6101 (class class class)co 6878 ωcom 7299 +𝑜 coa 7796 ≈ cen 8192 ≼ cdom 8193 Fincfn 8195 cardccrd 9047 +𝑐 ccda 9277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-card 9051 df-cda 9278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |