MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardun2 Structured version   Visualization version   GIF version

Theorem ficardun2 9347
Description: The cardinality of the union of finite sets is at most the ordinal sum of their cardinalities. (Contributed by Mario Carneiro, 5-Feb-2013.)
Assertion
Ref Expression
ficardun2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵)))

Proof of Theorem ficardun2
StepHypRef Expression
1 uncdadom 9315 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≼ (𝐴 +𝑐 𝐵))
2 finnum 9094 . . . . 5 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
3 finnum 9094 . . . . 5 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
4 cardacda 9342 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
52, 3, 4syl2an 589 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
6 domentr 8287 . . . 4 (((𝐴𝐵) ≼ (𝐴 +𝑐 𝐵) ∧ (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) → (𝐴𝐵) ≼ ((card‘𝐴) +o (card‘𝐵)))
71, 5, 6syl2anc 579 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≼ ((card‘𝐴) +o (card‘𝐵)))
8 unfi 8502 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
9 finnum 9094 . . . . 5 ((𝐴𝐵) ∈ Fin → (𝐴𝐵) ∈ dom card)
108, 9syl 17 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ dom card)
11 ficardom 9107 . . . . . 6 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
12 ficardom 9107 . . . . . 6 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
13 nnacl 7963 . . . . . 6 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω)
1411, 12, 13syl2an 589 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω)
15 nnon 7337 . . . . 5 (((card‘𝐴) +o (card‘𝐵)) ∈ ω → ((card‘𝐴) +o (card‘𝐵)) ∈ On)
16 onenon 9095 . . . . 5 (((card‘𝐴) +o (card‘𝐵)) ∈ On → ((card‘𝐴) +o (card‘𝐵)) ∈ dom card)
1714, 15, 163syl 18 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ∈ dom card)
18 carddom2 9123 . . . 4 (((𝐴𝐵) ∈ dom card ∧ ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) → ((card‘(𝐴𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))) ↔ (𝐴𝐵) ≼ ((card‘𝐴) +o (card‘𝐵))))
1910, 17, 18syl2anc 579 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘(𝐴𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))) ↔ (𝐴𝐵) ≼ ((card‘𝐴) +o (card‘𝐵))))
207, 19mpbird 249 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))))
21 cardnn 9109 . . 3 (((card‘𝐴) +o (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
2214, 21syl 17 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
2320, 22sseqtrd 3866 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  cun 3796  wss 3798   class class class wbr 4875  dom cdm 5346  Oncon0 5967  cfv 6127  (class class class)co 6910  ωcom 7331   +o coa 7828  cen 8225  cdom 8226  Fincfn 8228  cardccrd 9081   +𝑐 ccda 9311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-card 9085  df-cda 9312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator