Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ficardun2 | Structured version Visualization version GIF version |
Description: The cardinality of the union of finite sets is at most the ordinal sum of their cardinalities. (Contributed by Mario Carneiro, 5-Feb-2013.) Avoid ax-rep 5203. (Revised by BTernaryTau, 3-Jul-2024.) |
Ref | Expression |
---|---|
ficardun2 | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undjudom 9829 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) | |
2 | ficardadju 9861 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) | |
3 | domentr 8731 | . . . 4 ⊢ (((𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵) ∧ (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) → (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵))) | |
4 | 1, 2, 3 | syl2anc 587 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵))) |
5 | unfi 8894 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
6 | finnum 9612 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → (𝐴 ∪ 𝐵) ∈ dom card) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ dom card) |
8 | ficardom 9625 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | |
9 | ficardom 9625 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ∈ ω) | |
10 | nnacl 8381 | . . . . . 6 ⊢ (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω) | |
11 | 8, 9, 10 | syl2an 599 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω) |
12 | nnon 7690 | . . . . 5 ⊢ (((card‘𝐴) +o (card‘𝐵)) ∈ ω → ((card‘𝐴) +o (card‘𝐵)) ∈ On) | |
13 | onenon 9613 | . . . . 5 ⊢ (((card‘𝐴) +o (card‘𝐵)) ∈ On → ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) | |
14 | 11, 12, 13 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) |
15 | carddom2 9641 | . . . 4 ⊢ (((𝐴 ∪ 𝐵) ∈ dom card ∧ ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) → ((card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))) ↔ (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵)))) | |
16 | 7, 14, 15 | syl2anc 587 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))) ↔ (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵)))) |
17 | 4, 16 | mpbird 260 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵)))) |
18 | cardnn 9627 | . . 3 ⊢ (((card‘𝐴) +o (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) | |
19 | 11, 18 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) |
20 | 17, 19 | sseqtrd 3958 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∪ cun 3882 ⊆ wss 3884 class class class wbr 5070 dom cdm 5579 Oncon0 6248 ‘cfv 6415 (class class class)co 7252 ωcom 7684 +o coa 8241 ≈ cen 8665 ≼ cdom 8666 Fincfn 8668 ⊔ cdju 9562 cardccrd 9599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-oadd 8248 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-dju 9565 df-card 9603 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |