Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ficardun2 | Structured version Visualization version GIF version |
Description: The cardinality of the union of finite sets is at most the ordinal sum of their cardinalities. (Contributed by Mario Carneiro, 5-Feb-2013.) Avoid ax-rep 5209. (Revised by BTernaryTau, 3-Jul-2024.) |
Ref | Expression |
---|---|
ficardun2 | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undjudom 9923 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) | |
2 | ficardadju 9955 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) | |
3 | domentr 8799 | . . . 4 ⊢ (((𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵) ∧ (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) → (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵))) | |
4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵))) |
5 | unfi 8955 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
6 | finnum 9706 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → (𝐴 ∪ 𝐵) ∈ dom card) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ dom card) |
8 | ficardom 9719 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | |
9 | ficardom 9719 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ∈ ω) | |
10 | nnacl 8442 | . . . . . 6 ⊢ (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω) | |
11 | 8, 9, 10 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω) |
12 | nnon 7718 | . . . . 5 ⊢ (((card‘𝐴) +o (card‘𝐵)) ∈ ω → ((card‘𝐴) +o (card‘𝐵)) ∈ On) | |
13 | onenon 9707 | . . . . 5 ⊢ (((card‘𝐴) +o (card‘𝐵)) ∈ On → ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) | |
14 | 11, 12, 13 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) |
15 | carddom2 9735 | . . . 4 ⊢ (((𝐴 ∪ 𝐵) ∈ dom card ∧ ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) → ((card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))) ↔ (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵)))) | |
16 | 7, 14, 15 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))) ↔ (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +o (card‘𝐵)))) |
17 | 4, 16 | mpbird 256 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵)))) |
18 | cardnn 9721 | . . 3 ⊢ (((card‘𝐴) +o (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) | |
19 | 11, 18 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵))) |
20 | 17, 19 | sseqtrd 3961 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ⊆ wss 3887 class class class wbr 5074 dom cdm 5589 Oncon0 6266 ‘cfv 6433 (class class class)co 7275 ωcom 7712 +o coa 8294 ≈ cen 8730 ≼ cdom 8731 Fincfn 8733 ⊔ cdju 9656 cardccrd 9693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |