MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrvd00 Structured version   Visualization version   GIF version

Theorem usgrvd00 29469
Description: If every vertex in a simple graph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 17-Dec-2020.) (Proof shortened by AV, 23-Dec-2020.)
Hypotheses
Ref Expression
vtxdusgradjvtx.v 𝑉 = (Vtx‘𝐺)
vtxdusgradjvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgrvd00 (𝐺 ∈ USGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅))
Distinct variable groups:   𝑣,𝐸   𝑣,𝐺   𝑣,𝑉

Proof of Theorem usgrvd00
StepHypRef Expression
1 usgruhgr 29119 . 2 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
2 vtxdusgradjvtx.v . . 3 𝑉 = (Vtx‘𝐺)
3 vtxdusgradjvtx.e . . 3 𝐸 = (Edg‘𝐺)
42, 3uhgrvd00 29468 . 2 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅))
51, 4syl 17 1 (𝐺 ∈ USGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3045  c0 4298  cfv 6513  0cc0 11074  Vtxcvtx 28929  Edgcedg 28980  UHGraphcuhgr 28989  USGraphcusgr 29082  VtxDegcvtxdg 29399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-n0 12449  df-xnn0 12522  df-z 12536  df-uz 12800  df-xadd 13079  df-fz 13475  df-hash 14302  df-edg 28981  df-uhgr 28991  df-upgr 29015  df-uspgr 29083  df-usgr 29084  df-vtxdg 29400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator