![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashunsnggt | Structured version Visualization version GIF version |
Description: The size of a set is greater than a nonnegative integer N if and only if the size of the union of that set with a disjoint singleton is greater than N + 1. (Contributed by BTernaryTau, 10-Sep-2023.) |
Ref | Expression |
---|---|
hashunsnggt | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12497 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | 1 | rexrd 11280 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ*) |
3 | hashxrcl 14334 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (♯‘𝐴) ∈ ℝ*) | |
4 | 1re 11230 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
5 | xltadd1 13253 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1))) | |
6 | 4, 5 | mp3an3 1447 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1))) |
7 | 2, 3, 6 | syl2an 595 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑉) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1))) |
8 | 7 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1))) |
9 | rexadd 13229 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 +𝑒 1) = (𝑁 + 1)) | |
10 | 4, 9 | mpan2 690 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (𝑁 +𝑒 1) = (𝑁 + 1)) |
11 | 1, 10 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 +𝑒 1) = (𝑁 + 1)) |
12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑁 +𝑒 1) = (𝑁 + 1)) |
13 | 12 | breq1d 5152 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1))) |
14 | 8, 13 | bitrd 279 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1))) |
15 | 14 | 3adant2 1129 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1))) |
16 | 15 | adantr 480 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1))) |
17 | hashunsngx 14370 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝐵 ∈ 𝐴 → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1))) | |
18 | 17 | 3impia 1115 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1)) |
19 | 18 | eqcomd 2733 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵}))) |
20 | 19 | 3expa 1116 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ¬ 𝐵 ∈ 𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵}))) |
21 | 20 | 3adantl3 1166 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵}))) |
22 | 21 | breq2d 5154 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → ((𝑁 + 1) < ((♯‘𝐴) +𝑒 1) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵})))) |
23 | 16, 22 | bitrd 279 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∪ cun 3942 {csn 4624 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℝcr 11123 1c1 11125 + caddc 11127 ℝ*cxr 11263 < clt 11264 ℕ0cn0 12488 +𝑒 cxad 13108 ♯chash 14307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-dju 9910 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-n0 12489 df-xnn0 12561 df-z 12575 df-uz 12839 df-xneg 13110 df-xadd 13111 df-fz 13503 df-hash 14308 |
This theorem is referenced by: hashgt23el 14401 |
Copyright terms: Public domain | W3C validator |