![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashunsnggt | Structured version Visualization version GIF version |
Description: The size of a set is greater than a nonnegative integer N if and only if the size of the union of that set with a disjoint singleton is greater than N + 1. (Contributed by BTernaryTau, 10-Sep-2023.) |
Ref | Expression |
---|---|
hashunsnggt | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12526 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | 1 | rexrd 11304 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ*) |
3 | hashxrcl 14368 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (♯‘𝐴) ∈ ℝ*) | |
4 | 1re 11254 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
5 | xltadd1 13282 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1))) | |
6 | 4, 5 | mp3an3 1447 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1))) |
7 | 2, 3, 6 | syl2an 594 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑉) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1))) |
8 | 7 | ancoms 457 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1))) |
9 | rexadd 13258 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 +𝑒 1) = (𝑁 + 1)) | |
10 | 4, 9 | mpan2 689 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (𝑁 +𝑒 1) = (𝑁 + 1)) |
11 | 1, 10 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 +𝑒 1) = (𝑁 + 1)) |
12 | 11 | adantl 480 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑁 +𝑒 1) = (𝑁 + 1)) |
13 | 12 | breq1d 5155 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1))) |
14 | 8, 13 | bitrd 278 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1))) |
15 | 14 | 3adant2 1128 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1))) |
16 | 15 | adantr 479 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1))) |
17 | hashunsngx 14404 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝐵 ∈ 𝐴 → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1))) | |
18 | 17 | 3impia 1114 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1)) |
19 | 18 | eqcomd 2732 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵}))) |
20 | 19 | 3expa 1115 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ¬ 𝐵 ∈ 𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵}))) |
21 | 20 | 3adantl3 1165 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵}))) |
22 | 21 | breq2d 5157 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → ((𝑁 + 1) < ((♯‘𝐴) +𝑒 1) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵})))) |
23 | 16, 22 | bitrd 278 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∪ cun 3946 {csn 4625 class class class wbr 5145 ‘cfv 6545 (class class class)co 7415 ℝcr 11147 1c1 11149 + caddc 11151 ℝ*cxr 11287 < clt 11288 ℕ0cn0 12517 +𝑒 cxad 13137 ♯chash 14341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-int 4949 df-iun 4997 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-en 8966 df-dom 8967 df-sdom 8968 df-fin 8969 df-dju 9936 df-card 9974 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12258 df-n0 12518 df-xnn0 12590 df-z 12604 df-uz 12868 df-xneg 13139 df-xadd 13140 df-fz 13532 df-hash 14342 |
This theorem is referenced by: hashgt23el 14435 |
Copyright terms: Public domain | W3C validator |