MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashunsnggt Structured version   Visualization version   GIF version

Theorem hashunsnggt 14107
Description: The size of a set is greater than a nonnegative integer N if and only if the size of the union of that set with a disjoint singleton is greater than N + 1. (Contributed by BTernaryTau, 10-Sep-2023.)
Assertion
Ref Expression
hashunsnggt (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵}))))

Proof of Theorem hashunsnggt
StepHypRef Expression
1 nn0re 12242 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
21rexrd 11026 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
3 hashxrcl 14070 . . . . . . 7 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
4 1re 10976 . . . . . . . 8 1 ∈ ℝ
5 xltadd1 12989 . . . . . . . 8 ((𝑁 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
64, 5mp3an3 1449 . . . . . . 7 ((𝑁 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
72, 3, 6syl2an 596 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑉) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
87ancoms 459 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
9 rexadd 12965 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 +𝑒 1) = (𝑁 + 1))
104, 9mpan2 688 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 +𝑒 1) = (𝑁 + 1))
111, 10syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 +𝑒 1) = (𝑁 + 1))
1211adantl 482 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑁 +𝑒 1) = (𝑁 + 1))
1312breq1d 5089 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ0) → ((𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
148, 13bitrd 278 . . . 4 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
15143adant2 1130 . . 3 ((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
1615adantr 481 . 2 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
17 hashunsngx 14106 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (¬ 𝐵𝐴 → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1)))
18173impia 1116 . . . . . 6 ((𝐴𝑉𝐵𝑊 ∧ ¬ 𝐵𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1))
1918eqcomd 2746 . . . . 5 ((𝐴𝑉𝐵𝑊 ∧ ¬ 𝐵𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵})))
20193expa 1117 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵})))
21203adantl3 1167 . . 3 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵})))
2221breq2d 5091 . 2 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → ((𝑁 + 1) < ((♯‘𝐴) +𝑒 1) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵}))))
2316, 22bitrd 278 1 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  cun 3890  {csn 4567   class class class wbr 5079  cfv 6432  (class class class)co 7271  cr 10871  1c1 10873   + caddc 10875  *cxr 11009   < clt 11010  0cn0 12233   +𝑒 cxad 12845  chash 14042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-oadd 8292  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12582  df-xneg 12847  df-xadd 12848  df-fz 13239  df-hash 14043
This theorem is referenced by:  hashgt23el  14137
  Copyright terms: Public domain W3C validator