MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashunsnggt Structured version   Visualization version   GIF version

Theorem hashunsnggt 13756
Description: The size of a set is greater than a nonnegative integer N if and only if the size of the union of that set with a disjoint singleton is greater than N + 1. (Contributed by BTernaryTau, 10-Sep-2023.)
Assertion
Ref Expression
hashunsnggt (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵}))))

Proof of Theorem hashunsnggt
StepHypRef Expression
1 nn0re 11907 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
21rexrd 10691 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
3 hashxrcl 13719 . . . . . . 7 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
4 1re 10641 . . . . . . . 8 1 ∈ ℝ
5 xltadd1 12650 . . . . . . . 8 ((𝑁 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
64, 5mp3an3 1446 . . . . . . 7 ((𝑁 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
72, 3, 6syl2an 597 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑉) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
87ancoms 461 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
9 rexadd 12626 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 +𝑒 1) = (𝑁 + 1))
104, 9mpan2 689 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 +𝑒 1) = (𝑁 + 1))
111, 10syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 +𝑒 1) = (𝑁 + 1))
1211adantl 484 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑁 +𝑒 1) = (𝑁 + 1))
1312breq1d 5076 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ0) → ((𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
148, 13bitrd 281 . . . 4 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
15143adant2 1127 . . 3 ((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
1615adantr 483 . 2 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
17 hashunsngx 13755 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (¬ 𝐵𝐴 → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1)))
18173impia 1113 . . . . . 6 ((𝐴𝑉𝐵𝑊 ∧ ¬ 𝐵𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1))
1918eqcomd 2827 . . . . 5 ((𝐴𝑉𝐵𝑊 ∧ ¬ 𝐵𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵})))
20193expa 1114 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵})))
21203adantl3 1164 . . 3 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵})))
2221breq2d 5078 . 2 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → ((𝑁 + 1) < ((♯‘𝐴) +𝑒 1) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵}))))
2316, 22bitrd 281 1 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cun 3934  {csn 4567   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  1c1 10538   + caddc 10540  *cxr 10674   < clt 10675  0cn0 11898   +𝑒 cxad 12506  chash 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-xneg 12508  df-xadd 12509  df-fz 12894  df-hash 13692
This theorem is referenced by:  hashgt23el  13786
  Copyright terms: Public domain W3C validator