MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashunsnggt Structured version   Visualization version   GIF version

Theorem hashunsnggt 14383
Description: The size of a set is greater than a nonnegative integer N if and only if the size of the union of that set with a disjoint singleton is greater than N + 1. (Contributed by BTernaryTau, 10-Sep-2023.)
Assertion
Ref Expression
hashunsnggt (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵}))))

Proof of Theorem hashunsnggt
StepHypRef Expression
1 nn0re 12509 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
21rexrd 11292 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
3 hashxrcl 14346 . . . . . . 7 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
4 1re 11242 . . . . . . . 8 1 ∈ ℝ
5 xltadd1 13265 . . . . . . . 8 ((𝑁 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
64, 5mp3an3 1446 . . . . . . 7 ((𝑁 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
72, 3, 6syl2an 594 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑉) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
87ancoms 457 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
9 rexadd 13241 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 +𝑒 1) = (𝑁 + 1))
104, 9mpan2 689 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 +𝑒 1) = (𝑁 + 1))
111, 10syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 +𝑒 1) = (𝑁 + 1))
1211adantl 480 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑁 +𝑒 1) = (𝑁 + 1))
1312breq1d 5153 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ0) → ((𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
148, 13bitrd 278 . . . 4 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
15143adant2 1128 . . 3 ((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
1615adantr 479 . 2 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
17 hashunsngx 14382 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (¬ 𝐵𝐴 → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1)))
18173impia 1114 . . . . . 6 ((𝐴𝑉𝐵𝑊 ∧ ¬ 𝐵𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1))
1918eqcomd 2731 . . . . 5 ((𝐴𝑉𝐵𝑊 ∧ ¬ 𝐵𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵})))
20193expa 1115 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵})))
21203adantl3 1165 . . 3 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵})))
2221breq2d 5155 . 2 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → ((𝑁 + 1) < ((♯‘𝐴) +𝑒 1) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵}))))
2316, 22bitrd 278 1 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  cun 3938  {csn 4624   class class class wbr 5143  cfv 6542  (class class class)co 7415  cr 11135  1c1 11137   + caddc 11139  *cxr 11275   < clt 11276  0cn0 12500   +𝑒 cxad 13120  chash 14319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-oadd 8487  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-dju 9922  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-n0 12501  df-xnn0 12573  df-z 12587  df-uz 12851  df-xneg 13122  df-xadd 13123  df-fz 13515  df-hash 14320
This theorem is referenced by:  hashgt23el  14413
  Copyright terms: Public domain W3C validator