| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashunsnggt | Structured version Visualization version GIF version | ||
| Description: The size of a set is greater than a nonnegative integer N if and only if the size of the union of that set with a disjoint singleton is greater than N + 1. (Contributed by BTernaryTau, 10-Sep-2023.) |
| Ref | Expression |
|---|---|
| hashunsnggt | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12537 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | 1 | rexrd 11312 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ*) |
| 3 | hashxrcl 14397 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (♯‘𝐴) ∈ ℝ*) | |
| 4 | 1re 11262 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 5 | xltadd1 13299 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1))) | |
| 6 | 4, 5 | mp3an3 1451 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1))) |
| 7 | 2, 3, 6 | syl2an 596 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑉) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1))) |
| 8 | 7 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1))) |
| 9 | rexadd 13275 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 +𝑒 1) = (𝑁 + 1)) | |
| 10 | 4, 9 | mpan2 691 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (𝑁 +𝑒 1) = (𝑁 + 1)) |
| 11 | 1, 10 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 +𝑒 1) = (𝑁 + 1)) |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑁 +𝑒 1) = (𝑁 + 1)) |
| 13 | 12 | breq1d 5152 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1))) |
| 14 | 8, 13 | bitrd 279 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1))) |
| 15 | 14 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1))) |
| 16 | 15 | adantr 480 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1))) |
| 17 | hashunsngx 14433 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝐵 ∈ 𝐴 → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1))) | |
| 18 | 17 | 3impia 1117 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1)) |
| 19 | 18 | eqcomd 2742 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵}))) |
| 20 | 19 | 3expa 1118 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ¬ 𝐵 ∈ 𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵}))) |
| 21 | 20 | 3adantl3 1168 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵}))) |
| 22 | 21 | breq2d 5154 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → ((𝑁 + 1) < ((♯‘𝐴) +𝑒 1) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵})))) |
| 23 | 16, 22 | bitrd 279 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵})))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∪ cun 3948 {csn 4625 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 ℝcr 11155 1c1 11157 + caddc 11159 ℝ*cxr 11295 < clt 11296 ℕ0cn0 12528 +𝑒 cxad 13153 ♯chash 14370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-oadd 8511 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-xnn0 12602 df-z 12616 df-uz 12880 df-xneg 13155 df-xadd 13156 df-fz 13549 df-hash 14371 |
| This theorem is referenced by: hashgt23el 14464 |
| Copyright terms: Public domain | W3C validator |