MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashunsnggt Structured version   Visualization version   GIF version

Theorem hashunsnggt 14301
Description: The size of a set is greater than a nonnegative integer N if and only if the size of the union of that set with a disjoint singleton is greater than N + 1. (Contributed by BTernaryTau, 10-Sep-2023.)
Assertion
Ref Expression
hashunsnggt (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵}))))

Proof of Theorem hashunsnggt
StepHypRef Expression
1 nn0re 12429 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
21rexrd 11212 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
3 hashxrcl 14264 . . . . . . 7 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
4 1re 11162 . . . . . . . 8 1 ∈ ℝ
5 xltadd1 13182 . . . . . . . 8 ((𝑁 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
64, 5mp3an3 1451 . . . . . . 7 ((𝑁 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
72, 3, 6syl2an 597 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑉) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
87ancoms 460 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1)))
9 rexadd 13158 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 +𝑒 1) = (𝑁 + 1))
104, 9mpan2 690 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 +𝑒 1) = (𝑁 + 1))
111, 10syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 +𝑒 1) = (𝑁 + 1))
1211adantl 483 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑁 +𝑒 1) = (𝑁 + 1))
1312breq1d 5120 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ0) → ((𝑁 +𝑒 1) < ((♯‘𝐴) +𝑒 1) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
148, 13bitrd 279 . . . 4 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
15143adant2 1132 . . 3 ((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
1615adantr 482 . 2 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < ((♯‘𝐴) +𝑒 1)))
17 hashunsngx 14300 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (¬ 𝐵𝐴 → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1)))
18173impia 1118 . . . . . 6 ((𝐴𝑉𝐵𝑊 ∧ ¬ 𝐵𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1))
1918eqcomd 2743 . . . . 5 ((𝐴𝑉𝐵𝑊 ∧ ¬ 𝐵𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵})))
20193expa 1119 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵})))
21203adantl3 1169 . . 3 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → ((♯‘𝐴) +𝑒 1) = (♯‘(𝐴 ∪ {𝐵})))
2221breq2d 5122 . 2 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → ((𝑁 + 1) < ((♯‘𝐴) +𝑒 1) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵}))))
2316, 22bitrd 279 1 (((𝐴𝑉𝐵𝑊𝑁 ∈ ℕ0) ∧ ¬ 𝐵𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cun 3913  {csn 4591   class class class wbr 5110  cfv 6501  (class class class)co 7362  cr 11057  1c1 11059   + caddc 11061  *cxr 11195   < clt 11196  0cn0 12420   +𝑒 cxad 13038  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-xnn0 12493  df-z 12507  df-uz 12771  df-xneg 13040  df-xadd 13041  df-fz 13432  df-hash 14238
This theorem is referenced by:  hashgt23el  14331
  Copyright terms: Public domain W3C validator