![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrinfmss2 | Structured version Visualization version GIF version |
Description: Any subset of extended reals has an infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) |
Ref | Expression |
---|---|
xrinfmss2 | ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥◡ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrinfmss 13324 | . 2 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | |
2 | vex 3465 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | vex 3465 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brcnv 5885 | . . . . . 6 ⊢ (𝑥◡ < 𝑦 ↔ 𝑦 < 𝑥) |
5 | 4 | notbii 319 | . . . . 5 ⊢ (¬ 𝑥◡ < 𝑦 ↔ ¬ 𝑦 < 𝑥) |
6 | 5 | ralbii 3082 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥◡ < 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥) |
7 | 3, 2 | brcnv 5885 | . . . . . 6 ⊢ (𝑦◡ < 𝑥 ↔ 𝑥 < 𝑦) |
8 | vex 3465 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
9 | 3, 8 | brcnv 5885 | . . . . . . 7 ⊢ (𝑦◡ < 𝑧 ↔ 𝑧 < 𝑦) |
10 | 9 | rexbii 3083 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧 ↔ ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) |
11 | 7, 10 | imbi12i 349 | . . . . 5 ⊢ ((𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧) ↔ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
12 | 11 | ralbii 3082 | . . . 4 ⊢ (∀𝑦 ∈ ℝ* (𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
13 | 6, 12 | anbi12i 626 | . . 3 ⊢ ((∀𝑦 ∈ 𝐴 ¬ 𝑥◡ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
14 | 13 | rexbii 3083 | . 2 ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥◡ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
15 | 1, 14 | sylibr 233 | 1 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥◡ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∀wral 3050 ∃wrex 3059 ⊆ wss 3944 class class class wbr 5149 ◡ccnv 5677 ℝ*cxr 11279 < clt 11280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 |
This theorem is referenced by: xrsclat 32827 |
Copyright terms: Public domain | W3C validator |