![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrinfmss2 | Structured version Visualization version GIF version |
Description: Any subset of extended reals has an infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) |
Ref | Expression |
---|---|
xrinfmss2 | ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥◡ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrinfmss 12519 | . 2 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | |
2 | vex 3418 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | vex 3418 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brcnv 5603 | . . . . . 6 ⊢ (𝑥◡ < 𝑦 ↔ 𝑦 < 𝑥) |
5 | 4 | notbii 312 | . . . . 5 ⊢ (¬ 𝑥◡ < 𝑦 ↔ ¬ 𝑦 < 𝑥) |
6 | 5 | ralbii 3115 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥◡ < 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥) |
7 | 3, 2 | brcnv 5603 | . . . . . 6 ⊢ (𝑦◡ < 𝑥 ↔ 𝑥 < 𝑦) |
8 | vex 3418 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
9 | 3, 8 | brcnv 5603 | . . . . . . 7 ⊢ (𝑦◡ < 𝑧 ↔ 𝑧 < 𝑦) |
10 | 9 | rexbii 3194 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧 ↔ ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) |
11 | 7, 10 | imbi12i 343 | . . . . 5 ⊢ ((𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧) ↔ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
12 | 11 | ralbii 3115 | . . . 4 ⊢ (∀𝑦 ∈ ℝ* (𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
13 | 6, 12 | anbi12i 617 | . . 3 ⊢ ((∀𝑦 ∈ 𝐴 ¬ 𝑥◡ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
14 | 13 | rexbii 3194 | . 2 ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥◡ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
15 | 1, 14 | sylibr 226 | 1 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥◡ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 ∀wral 3088 ∃wrex 3089 ⊆ wss 3829 class class class wbr 4929 ◡ccnv 5406 ℝ*cxr 10473 < clt 10474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-po 5326 df-so 5327 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 |
This theorem is referenced by: xrsclat 30405 |
Copyright terms: Public domain | W3C validator |