| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subsfo | Structured version Visualization version GIF version | ||
| Description: Surreal subtraction is an onto function. (Contributed by Scott Fenton, 17-May-2025.) |
| Ref | Expression |
|---|---|
| subsfo | ⊢ -s :( No × No )–onto→ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsf 27991 | . 2 ⊢ -s :( No × No )⟶ No | |
| 2 | 0sno 27758 | . . . . 5 ⊢ 0s ∈ No | |
| 3 | opelxpi 5660 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 0s ∈ No ) → 〈𝑥, 0s 〉 ∈ ( No × No )) | |
| 4 | 2, 3 | mpan2 691 | . . . 4 ⊢ (𝑥 ∈ No → 〈𝑥, 0s 〉 ∈ ( No × No )) |
| 5 | subsval 27987 | . . . . . 6 ⊢ ((𝑥 ∈ No ∧ 0s ∈ No ) → (𝑥 -s 0s ) = (𝑥 +s ( -us ‘ 0s ))) | |
| 6 | 2, 5 | mpan2 691 | . . . . 5 ⊢ (𝑥 ∈ No → (𝑥 -s 0s ) = (𝑥 +s ( -us ‘ 0s ))) |
| 7 | negs0s 27955 | . . . . . . 7 ⊢ ( -us ‘ 0s ) = 0s | |
| 8 | 7 | oveq2i 7364 | . . . . . 6 ⊢ (𝑥 +s ( -us ‘ 0s )) = (𝑥 +s 0s ) |
| 9 | addsrid 27894 | . . . . . 6 ⊢ (𝑥 ∈ No → (𝑥 +s 0s ) = 𝑥) | |
| 10 | 8, 9 | eqtrid 2776 | . . . . 5 ⊢ (𝑥 ∈ No → (𝑥 +s ( -us ‘ 0s )) = 𝑥) |
| 11 | 6, 10 | eqtr2d 2765 | . . . 4 ⊢ (𝑥 ∈ No → 𝑥 = (𝑥 -s 0s )) |
| 12 | fveq2 6826 | . . . . . 6 ⊢ (𝑦 = 〈𝑥, 0s 〉 → ( -s ‘𝑦) = ( -s ‘〈𝑥, 0s 〉)) | |
| 13 | df-ov 7356 | . . . . . 6 ⊢ (𝑥 -s 0s ) = ( -s ‘〈𝑥, 0s 〉) | |
| 14 | 12, 13 | eqtr4di 2782 | . . . . 5 ⊢ (𝑦 = 〈𝑥, 0s 〉 → ( -s ‘𝑦) = (𝑥 -s 0s )) |
| 15 | 14 | rspceeqv 3602 | . . . 4 ⊢ ((〈𝑥, 0s 〉 ∈ ( No × No ) ∧ 𝑥 = (𝑥 -s 0s )) → ∃𝑦 ∈ ( No × No )𝑥 = ( -s ‘𝑦)) |
| 16 | 4, 11, 15 | syl2anc 584 | . . 3 ⊢ (𝑥 ∈ No → ∃𝑦 ∈ ( No × No )𝑥 = ( -s ‘𝑦)) |
| 17 | 16 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ No ∃𝑦 ∈ ( No × No )𝑥 = ( -s ‘𝑦) |
| 18 | dffo3 7040 | . 2 ⊢ ( -s :( No × No )–onto→ No ↔ ( -s :( No × No )⟶ No ∧ ∀𝑥 ∈ No ∃𝑦 ∈ ( No × No )𝑥 = ( -s ‘𝑦))) | |
| 19 | 1, 17, 18 | mpbir2an 711 | 1 ⊢ -s :( No × No )–onto→ No |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 〈cop 4585 × cxp 5621 ⟶wf 6482 –onto→wfo 6484 ‘cfv 6486 (class class class)co 7353 No csur 27567 0s c0s 27754 +s cadds 27889 -us cnegs 27948 -s csubs 27949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-1o 8395 df-2o 8396 df-nadd 8591 df-no 27570 df-slt 27571 df-bday 27572 df-sslt 27710 df-scut 27712 df-0s 27756 df-made 27775 df-old 27776 df-left 27778 df-right 27779 df-norec 27868 df-norec2 27879 df-adds 27890 df-negs 27950 df-subs 27951 |
| This theorem is referenced by: zssno 28292 |
| Copyright terms: Public domain | W3C validator |