MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsfo Structured version   Visualization version   GIF version

Theorem subsfo 27992
Description: Surreal subtraction is an onto function. (Contributed by Scott Fenton, 17-May-2025.)
Assertion
Ref Expression
subsfo -s :( No × No )–onto No

Proof of Theorem subsfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subsf 27991 . 2 -s :( No × No )⟶ No
2 0sno 27758 . . . . 5 0s No
3 opelxpi 5660 . . . . 5 ((𝑥 No ∧ 0s No ) → ⟨𝑥, 0s ⟩ ∈ ( No × No ))
42, 3mpan2 691 . . . 4 (𝑥 No → ⟨𝑥, 0s ⟩ ∈ ( No × No ))
5 subsval 27987 . . . . . 6 ((𝑥 No ∧ 0s No ) → (𝑥 -s 0s ) = (𝑥 +s ( -us ‘ 0s )))
62, 5mpan2 691 . . . . 5 (𝑥 No → (𝑥 -s 0s ) = (𝑥 +s ( -us ‘ 0s )))
7 negs0s 27955 . . . . . . 7 ( -us ‘ 0s ) = 0s
87oveq2i 7364 . . . . . 6 (𝑥 +s ( -us ‘ 0s )) = (𝑥 +s 0s )
9 addsrid 27894 . . . . . 6 (𝑥 No → (𝑥 +s 0s ) = 𝑥)
108, 9eqtrid 2776 . . . . 5 (𝑥 No → (𝑥 +s ( -us ‘ 0s )) = 𝑥)
116, 10eqtr2d 2765 . . . 4 (𝑥 No 𝑥 = (𝑥 -s 0s ))
12 fveq2 6826 . . . . . 6 (𝑦 = ⟨𝑥, 0s ⟩ → ( -s𝑦) = ( -s ‘⟨𝑥, 0s ⟩))
13 df-ov 7356 . . . . . 6 (𝑥 -s 0s ) = ( -s ‘⟨𝑥, 0s ⟩)
1412, 13eqtr4di 2782 . . . . 5 (𝑦 = ⟨𝑥, 0s ⟩ → ( -s𝑦) = (𝑥 -s 0s ))
1514rspceeqv 3602 . . . 4 ((⟨𝑥, 0s ⟩ ∈ ( No × No ) ∧ 𝑥 = (𝑥 -s 0s )) → ∃𝑦 ∈ ( No × No )𝑥 = ( -s𝑦))
164, 11, 15syl2anc 584 . . 3 (𝑥 No → ∃𝑦 ∈ ( No × No )𝑥 = ( -s𝑦))
1716rgen 3046 . 2 𝑥 No 𝑦 ∈ ( No × No )𝑥 = ( -s𝑦)
18 dffo3 7040 . 2 ( -s :( No × No )–onto No ↔ ( -s :( No × No )⟶ No ∧ ∀𝑥 No 𝑦 ∈ ( No × No )𝑥 = ( -s𝑦)))
191, 17, 18mpbir2an 711 1 -s :( No × No )–onto No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cop 4585   × cxp 5621  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7353   No csur 27567   0s c0s 27754   +s cadds 27889   -us cnegs 27948   -s csubs 27949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sslt 27710  df-scut 27712  df-0s 27756  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27950  df-subs 27951
This theorem is referenced by:  zssno  28292
  Copyright terms: Public domain W3C validator