| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subsfo | Structured version Visualization version GIF version | ||
| Description: Surreal subtraction is an onto function. (Contributed by Scott Fenton, 17-May-2025.) |
| Ref | Expression |
|---|---|
| subsfo | ⊢ -s :( No × No )–onto→ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsf 28002 | . 2 ⊢ -s :( No × No )⟶ No | |
| 2 | 0sno 27768 | . . . . 5 ⊢ 0s ∈ No | |
| 3 | opelxpi 5653 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 0s ∈ No ) → 〈𝑥, 0s 〉 ∈ ( No × No )) | |
| 4 | 2, 3 | mpan2 691 | . . . 4 ⊢ (𝑥 ∈ No → 〈𝑥, 0s 〉 ∈ ( No × No )) |
| 5 | subsval 27998 | . . . . . 6 ⊢ ((𝑥 ∈ No ∧ 0s ∈ No ) → (𝑥 -s 0s ) = (𝑥 +s ( -us ‘ 0s ))) | |
| 6 | 2, 5 | mpan2 691 | . . . . 5 ⊢ (𝑥 ∈ No → (𝑥 -s 0s ) = (𝑥 +s ( -us ‘ 0s ))) |
| 7 | negs0s 27966 | . . . . . . 7 ⊢ ( -us ‘ 0s ) = 0s | |
| 8 | 7 | oveq2i 7357 | . . . . . 6 ⊢ (𝑥 +s ( -us ‘ 0s )) = (𝑥 +s 0s ) |
| 9 | addsrid 27905 | . . . . . 6 ⊢ (𝑥 ∈ No → (𝑥 +s 0s ) = 𝑥) | |
| 10 | 8, 9 | eqtrid 2778 | . . . . 5 ⊢ (𝑥 ∈ No → (𝑥 +s ( -us ‘ 0s )) = 𝑥) |
| 11 | 6, 10 | eqtr2d 2767 | . . . 4 ⊢ (𝑥 ∈ No → 𝑥 = (𝑥 -s 0s )) |
| 12 | fveq2 6822 | . . . . . 6 ⊢ (𝑦 = 〈𝑥, 0s 〉 → ( -s ‘𝑦) = ( -s ‘〈𝑥, 0s 〉)) | |
| 13 | df-ov 7349 | . . . . . 6 ⊢ (𝑥 -s 0s ) = ( -s ‘〈𝑥, 0s 〉) | |
| 14 | 12, 13 | eqtr4di 2784 | . . . . 5 ⊢ (𝑦 = 〈𝑥, 0s 〉 → ( -s ‘𝑦) = (𝑥 -s 0s )) |
| 15 | 14 | rspceeqv 3600 | . . . 4 ⊢ ((〈𝑥, 0s 〉 ∈ ( No × No ) ∧ 𝑥 = (𝑥 -s 0s )) → ∃𝑦 ∈ ( No × No )𝑥 = ( -s ‘𝑦)) |
| 16 | 4, 11, 15 | syl2anc 584 | . . 3 ⊢ (𝑥 ∈ No → ∃𝑦 ∈ ( No × No )𝑥 = ( -s ‘𝑦)) |
| 17 | 16 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ No ∃𝑦 ∈ ( No × No )𝑥 = ( -s ‘𝑦) |
| 18 | dffo3 7035 | . 2 ⊢ ( -s :( No × No )–onto→ No ↔ ( -s :( No × No )⟶ No ∧ ∀𝑥 ∈ No ∃𝑦 ∈ ( No × No )𝑥 = ( -s ‘𝑦))) | |
| 19 | 1, 17, 18 | mpbir2an 711 | 1 ⊢ -s :( No × No )–onto→ No |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 〈cop 4582 × cxp 5614 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 No csur 27576 0s c0s 27764 +s cadds 27900 -us cnegs 27959 -s csubs 27960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27579 df-slt 27580 df-bday 27581 df-sslt 27719 df-scut 27721 df-0s 27766 df-made 27786 df-old 27787 df-left 27789 df-right 27790 df-norec 27879 df-norec2 27890 df-adds 27901 df-negs 27961 df-subs 27962 |
| This theorem is referenced by: zssno 28303 |
| Copyright terms: Public domain | W3C validator |