MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsfo Structured version   Visualization version   GIF version

Theorem subsfo 27976
Description: Surreal subtraction is an onto function. (Contributed by Scott Fenton, 17-May-2025.)
Assertion
Ref Expression
subsfo -s :( No × No )–onto No

Proof of Theorem subsfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subsf 27975 . 2 -s :( No × No )⟶ No
2 0sno 27745 . . . . 5 0s No
3 opelxpi 5678 . . . . 5 ((𝑥 No ∧ 0s No ) → ⟨𝑥, 0s ⟩ ∈ ( No × No ))
42, 3mpan2 691 . . . 4 (𝑥 No → ⟨𝑥, 0s ⟩ ∈ ( No × No ))
5 subsval 27971 . . . . . 6 ((𝑥 No ∧ 0s No ) → (𝑥 -s 0s ) = (𝑥 +s ( -us ‘ 0s )))
62, 5mpan2 691 . . . . 5 (𝑥 No → (𝑥 -s 0s ) = (𝑥 +s ( -us ‘ 0s )))
7 negs0s 27939 . . . . . . 7 ( -us ‘ 0s ) = 0s
87oveq2i 7401 . . . . . 6 (𝑥 +s ( -us ‘ 0s )) = (𝑥 +s 0s )
9 addsrid 27878 . . . . . 6 (𝑥 No → (𝑥 +s 0s ) = 𝑥)
108, 9eqtrid 2777 . . . . 5 (𝑥 No → (𝑥 +s ( -us ‘ 0s )) = 𝑥)
116, 10eqtr2d 2766 . . . 4 (𝑥 No 𝑥 = (𝑥 -s 0s ))
12 fveq2 6861 . . . . . 6 (𝑦 = ⟨𝑥, 0s ⟩ → ( -s𝑦) = ( -s ‘⟨𝑥, 0s ⟩))
13 df-ov 7393 . . . . . 6 (𝑥 -s 0s ) = ( -s ‘⟨𝑥, 0s ⟩)
1412, 13eqtr4di 2783 . . . . 5 (𝑦 = ⟨𝑥, 0s ⟩ → ( -s𝑦) = (𝑥 -s 0s ))
1514rspceeqv 3614 . . . 4 ((⟨𝑥, 0s ⟩ ∈ ( No × No ) ∧ 𝑥 = (𝑥 -s 0s )) → ∃𝑦 ∈ ( No × No )𝑥 = ( -s𝑦))
164, 11, 15syl2anc 584 . . 3 (𝑥 No → ∃𝑦 ∈ ( No × No )𝑥 = ( -s𝑦))
1716rgen 3047 . 2 𝑥 No 𝑦 ∈ ( No × No )𝑥 = ( -s𝑦)
18 dffo3 7077 . 2 ( -s :( No × No )–onto No ↔ ( -s :( No × No )⟶ No ∧ ∀𝑥 No 𝑦 ∈ ( No × No )𝑥 = ( -s𝑦)))
191, 17, 18mpbir2an 711 1 -s :( No × No )–onto No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cop 4598   × cxp 5639  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390   No csur 27558   0s c0s 27741   +s cadds 27873   -us cnegs 27932   -s csubs 27933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sslt 27700  df-scut 27702  df-0s 27743  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935
This theorem is referenced by:  zssno  28276
  Copyright terms: Public domain W3C validator