MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsfo Structured version   Visualization version   GIF version

Theorem subsfo 28113
Description: Surreal subtraction is an onto function. (Contributed by Scott Fenton, 17-May-2025.)
Assertion
Ref Expression
subsfo -s :( No × No )–onto No

Proof of Theorem subsfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subsf 28112 . 2 -s :( No × No )⟶ No
2 0sno 27889 . . . . 5 0s No
3 opelxpi 5737 . . . . 5 ((𝑥 No ∧ 0s No ) → ⟨𝑥, 0s ⟩ ∈ ( No × No ))
42, 3mpan2 690 . . . 4 (𝑥 No → ⟨𝑥, 0s ⟩ ∈ ( No × No ))
5 subsval 28108 . . . . . 6 ((𝑥 No ∧ 0s No ) → (𝑥 -s 0s ) = (𝑥 +s ( -us ‘ 0s )))
62, 5mpan2 690 . . . . 5 (𝑥 No → (𝑥 -s 0s ) = (𝑥 +s ( -us ‘ 0s )))
7 negs0s 28076 . . . . . . 7 ( -us ‘ 0s ) = 0s
87oveq2i 7459 . . . . . 6 (𝑥 +s ( -us ‘ 0s )) = (𝑥 +s 0s )
9 addsrid 28015 . . . . . 6 (𝑥 No → (𝑥 +s 0s ) = 𝑥)
108, 9eqtrid 2792 . . . . 5 (𝑥 No → (𝑥 +s ( -us ‘ 0s )) = 𝑥)
116, 10eqtr2d 2781 . . . 4 (𝑥 No 𝑥 = (𝑥 -s 0s ))
12 fveq2 6920 . . . . . 6 (𝑦 = ⟨𝑥, 0s ⟩ → ( -s𝑦) = ( -s ‘⟨𝑥, 0s ⟩))
13 df-ov 7451 . . . . . 6 (𝑥 -s 0s ) = ( -s ‘⟨𝑥, 0s ⟩)
1412, 13eqtr4di 2798 . . . . 5 (𝑦 = ⟨𝑥, 0s ⟩ → ( -s𝑦) = (𝑥 -s 0s ))
1514rspceeqv 3658 . . . 4 ((⟨𝑥, 0s ⟩ ∈ ( No × No ) ∧ 𝑥 = (𝑥 -s 0s )) → ∃𝑦 ∈ ( No × No )𝑥 = ( -s𝑦))
164, 11, 15syl2anc 583 . . 3 (𝑥 No → ∃𝑦 ∈ ( No × No )𝑥 = ( -s𝑦))
1716rgen 3069 . 2 𝑥 No 𝑦 ∈ ( No × No )𝑥 = ( -s𝑦)
18 dffo3 7136 . 2 ( -s :( No × No )–onto No ↔ ( -s :( No × No )⟶ No ∧ ∀𝑥 No 𝑦 ∈ ( No × No )𝑥 = ( -s𝑦)))
191, 17, 18mpbir2an 710 1 -s :( No × No )–onto No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cop 4654   × cxp 5698  wf 6569  ontowfo 6571  cfv 6573  (class class class)co 7448   No csur 27702   0s c0s 27885   +s cadds 28010   -us cnegs 28069   -s csubs 28070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072
This theorem is referenced by:  zssno  28385
  Copyright terms: Public domain W3C validator