ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem1c GIF version

Theorem 2lgslem1c 15238
Description: Lemma 3 for 2lgslem1 15239. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1c ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))

Proof of Theorem 2lgslem1c
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prmnn 12251 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 nnnn0 9250 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
3 oddnn02np1 12024 . . . 4 (𝑃 ∈ ℕ0 → (¬ 2 ∥ 𝑃 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃))
41, 2, 33syl 17 . . 3 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃))
5 iftrue 3563 . . . . . . . . . 10 (2 ∥ 𝑛 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = (𝑛 / 2))
65adantr 276 . . . . . . . . 9 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = (𝑛 / 2))
7 2nn 9146 . . . . . . . . . . 11 2 ∈ ℕ
8 nn0ledivnn 9836 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑛 / 2) ≤ 𝑛)
97, 8mpan2 425 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 / 2) ≤ 𝑛)
109adantl 277 . . . . . . . . 9 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → (𝑛 / 2) ≤ 𝑛)
116, 10eqbrtrd 4052 . . . . . . . 8 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
1211expcom 116 . . . . . . 7 (𝑛 ∈ ℕ0 → (2 ∥ 𝑛 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛))
13 iffalse 3566 . . . . . . . . . 10 (¬ 2 ∥ 𝑛 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = ((𝑛 − 1) / 2))
1413adantr 276 . . . . . . . . 9 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = ((𝑛 − 1) / 2))
15 nn0re 9252 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
16 peano2rem 8288 . . . . . . . . . . . . 13 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
1716rehalfcld 9232 . . . . . . . . . . . 12 (𝑛 ∈ ℝ → ((𝑛 − 1) / 2) ∈ ℝ)
1815, 17syl 14 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ∈ ℝ)
1915rehalfcld 9232 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑛 / 2) ∈ ℝ)
2015lem1d 8954 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑛 − 1) ≤ 𝑛)
2115, 16syl 14 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑛 − 1) ∈ ℝ)
22 2re 9054 . . . . . . . . . . . . . . 15 2 ∈ ℝ
23 2pos 9075 . . . . . . . . . . . . . . 15 0 < 2
2422, 23pm3.2i 272 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 0 < 2)
2524a1i 9 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (2 ∈ ℝ ∧ 0 < 2))
26 lediv1 8890 . . . . . . . . . . . . 13 (((𝑛 − 1) ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑛 − 1) ≤ 𝑛 ↔ ((𝑛 − 1) / 2) ≤ (𝑛 / 2)))
2721, 15, 25, 26syl3anc 1249 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → ((𝑛 − 1) ≤ 𝑛 ↔ ((𝑛 − 1) / 2) ≤ (𝑛 / 2)))
2820, 27mpbid 147 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ≤ (𝑛 / 2))
2918, 19, 15, 28, 9letrd 8145 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ≤ 𝑛)
3029adantl 277 . . . . . . . . 9 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → ((𝑛 − 1) / 2) ≤ 𝑛)
3114, 30eqbrtrd 4052 . . . . . . . 8 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
3231expcom 116 . . . . . . 7 (𝑛 ∈ ℕ0 → (¬ 2 ∥ 𝑛 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛))
33 nn0z 9340 . . . . . . . 8 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
34 zeo3 12012 . . . . . . . 8 (𝑛 ∈ ℤ → (2 ∥ 𝑛 ∨ ¬ 2 ∥ 𝑛))
3533, 34syl 14 . . . . . . 7 (𝑛 ∈ ℕ0 → (2 ∥ 𝑛 ∨ ¬ 2 ∥ 𝑛))
3612, 32, 35mpjaod 719 . . . . . 6 (𝑛 ∈ ℕ0 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
3736ad2antlr 489 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
3833adantl 277 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
39 eqcom 2195 . . . . . . 7 (((2 · 𝑛) + 1) = 𝑃𝑃 = ((2 · 𝑛) + 1))
4039biimpi 120 . . . . . 6 (((2 · 𝑛) + 1) = 𝑃𝑃 = ((2 · 𝑛) + 1))
41 flodddiv4 12078 . . . . . 6 ((𝑛 ∈ ℤ ∧ 𝑃 = ((2 · 𝑛) + 1)) → (⌊‘(𝑃 / 4)) = if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)))
4238, 40, 41syl2an 289 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (⌊‘(𝑃 / 4)) = if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)))
43 oveq1 5926 . . . . . . . . . 10 (𝑃 = ((2 · 𝑛) + 1) → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
4443eqcoms 2196 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑃 → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
4544adantl 277 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
46 2nn0 9260 . . . . . . . . . . . . 13 2 ∈ ℕ0
4746a1i 9 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
48 id 19 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
4947, 48nn0mulcld 9301 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
5049nn0cnd 9298 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℂ)
51 pncan1 8398 . . . . . . . . . 10 ((2 · 𝑛) ∈ ℂ → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5250, 51syl 14 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5352ad2antlr 489 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5445, 53eqtrd 2226 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (𝑃 − 1) = (2 · 𝑛))
5554oveq1d 5934 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((𝑃 − 1) / 2) = ((2 · 𝑛) / 2))
56 nn0cn 9253 . . . . . . . 8 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
57 2cnd 9057 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
58 2ap0 9077 . . . . . . . . 9 2 # 0
5958a1i 9 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 # 0)
6056, 57, 59divcanap3d 8816 . . . . . . 7 (𝑛 ∈ ℕ0 → ((2 · 𝑛) / 2) = 𝑛)
6160ad2antlr 489 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((2 · 𝑛) / 2) = 𝑛)
6255, 61eqtrd 2226 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((𝑃 − 1) / 2) = 𝑛)
6337, 42, 623brtr4d 4062 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
6463rexlimdva2 2614 . . 3 (𝑃 ∈ ℙ → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃 → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
654, 64sylbid 150 . 2 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
6665imp 124 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  wrex 2473  ifcif 3558   class class class wbr 4030  cfv 5255  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cle 8057  cmin 8192   # cap 8602   / cdiv 8693  cn 8984  2c2 9035  4c4 9037  0cn0 9243  cz 9320  cfl 10340  cdvds 11933  cprime 12248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-q 9688  df-rp 9723  df-fl 10342  df-dvds 11934  df-prm 12249
This theorem is referenced by:  2lgslem1  15239
  Copyright terms: Public domain W3C validator