Step | Hyp | Ref
| Expression |
1 | | prmnn 12251 |
. . . 4
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
2 | | nnnn0 9250 |
. . . 4
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℕ0) |
3 | | oddnn02np1 12024 |
. . . 4
⊢ (𝑃 ∈ ℕ0
→ (¬ 2 ∥ 𝑃
↔ ∃𝑛 ∈
ℕ0 ((2 · 𝑛) + 1) = 𝑃)) |
4 | 1, 2, 3 | 3syl 17 |
. . 3
⊢ (𝑃 ∈ ℙ → (¬ 2
∥ 𝑃 ↔
∃𝑛 ∈
ℕ0 ((2 · 𝑛) + 1) = 𝑃)) |
5 | | iftrue 3563 |
. . . . . . . . . 10
⊢ (2
∥ 𝑛 → if(2
∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = (𝑛 / 2)) |
6 | 5 | adantr 276 |
. . . . . . . . 9
⊢ ((2
∥ 𝑛 ∧ 𝑛 ∈ ℕ0)
→ if(2 ∥ 𝑛,
(𝑛 / 2), ((𝑛 − 1) / 2)) = (𝑛 / 2)) |
7 | | 2nn 9146 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ |
8 | | nn0ledivnn 9836 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0
∧ 2 ∈ ℕ) → (𝑛 / 2) ≤ 𝑛) |
9 | 7, 8 | mpan2 425 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (𝑛 / 2) ≤ 𝑛) |
10 | 9 | adantl 277 |
. . . . . . . . 9
⊢ ((2
∥ 𝑛 ∧ 𝑛 ∈ ℕ0)
→ (𝑛 / 2) ≤ 𝑛) |
11 | 6, 10 | eqbrtrd 4052 |
. . . . . . . 8
⊢ ((2
∥ 𝑛 ∧ 𝑛 ∈ ℕ0)
→ if(2 ∥ 𝑛,
(𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛) |
12 | 11 | expcom 116 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ (2 ∥ 𝑛 →
if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)) |
13 | | iffalse 3566 |
. . . . . . . . . 10
⊢ (¬ 2
∥ 𝑛 → if(2
∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = ((𝑛 − 1) / 2)) |
14 | 13 | adantr 276 |
. . . . . . . . 9
⊢ ((¬ 2
∥ 𝑛 ∧ 𝑛 ∈ ℕ0)
→ if(2 ∥ 𝑛,
(𝑛 / 2), ((𝑛 − 1) / 2)) = ((𝑛 − 1) /
2)) |
15 | | nn0re 9252 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℝ) |
16 | | peano2rem 8288 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℝ → (𝑛 − 1) ∈
ℝ) |
17 | 16 | rehalfcld 9232 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℝ → ((𝑛 − 1) / 2) ∈
ℝ) |
18 | 15, 17 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ ((𝑛 − 1) / 2)
∈ ℝ) |
19 | 15 | rehalfcld 9232 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ (𝑛 / 2) ∈
ℝ) |
20 | 15 | lem1d 8954 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ (𝑛 − 1) ≤
𝑛) |
21 | 15, 16 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ (𝑛 − 1) ∈
ℝ) |
22 | | 2re 9054 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
23 | | 2pos 9075 |
. . . . . . . . . . . . . . 15
⊢ 0 <
2 |
24 | 22, 23 | pm3.2i 272 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℝ ∧ 0 < 2) |
25 | 24 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ (2 ∈ ℝ ∧ 0 < 2)) |
26 | | lediv1 8890 |
. . . . . . . . . . . . 13
⊢ (((𝑛 − 1) ∈ ℝ ∧
𝑛 ∈ ℝ ∧ (2
∈ ℝ ∧ 0 < 2)) → ((𝑛 − 1) ≤ 𝑛 ↔ ((𝑛 − 1) / 2) ≤ (𝑛 / 2))) |
27 | 21, 15, 25, 26 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ ((𝑛 − 1) ≤
𝑛 ↔ ((𝑛 − 1) / 2) ≤ (𝑛 / 2))) |
28 | 20, 27 | mpbid 147 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ ((𝑛 − 1) / 2)
≤ (𝑛 /
2)) |
29 | 18, 19, 15, 28, 9 | letrd 8145 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ ((𝑛 − 1) / 2)
≤ 𝑛) |
30 | 29 | adantl 277 |
. . . . . . . . 9
⊢ ((¬ 2
∥ 𝑛 ∧ 𝑛 ∈ ℕ0)
→ ((𝑛 − 1) / 2)
≤ 𝑛) |
31 | 14, 30 | eqbrtrd 4052 |
. . . . . . . 8
⊢ ((¬ 2
∥ 𝑛 ∧ 𝑛 ∈ ℕ0)
→ if(2 ∥ 𝑛,
(𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛) |
32 | 31 | expcom 116 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ (¬ 2 ∥ 𝑛
→ if(2 ∥ 𝑛,
(𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)) |
33 | | nn0z 9340 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
34 | | zeo3 12012 |
. . . . . . . 8
⊢ (𝑛 ∈ ℤ → (2
∥ 𝑛 ∨ ¬ 2
∥ 𝑛)) |
35 | 33, 34 | syl 14 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ (2 ∥ 𝑛 ∨
¬ 2 ∥ 𝑛)) |
36 | 12, 32, 35 | mpjaod 719 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ if(2 ∥ 𝑛,
(𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛) |
37 | 36 | ad2antlr 489 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0)
∧ ((2 · 𝑛) + 1)
= 𝑃) → if(2 ∥
𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛) |
38 | 33 | adantl 277 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0)
→ 𝑛 ∈
ℤ) |
39 | | eqcom 2195 |
. . . . . . 7
⊢ (((2
· 𝑛) + 1) = 𝑃 ↔ 𝑃 = ((2 · 𝑛) + 1)) |
40 | 39 | biimpi 120 |
. . . . . 6
⊢ (((2
· 𝑛) + 1) = 𝑃 → 𝑃 = ((2 · 𝑛) + 1)) |
41 | | flodddiv4 12078 |
. . . . . 6
⊢ ((𝑛 ∈ ℤ ∧ 𝑃 = ((2 · 𝑛) + 1)) →
(⌊‘(𝑃 / 4)) =
if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2))) |
42 | 38, 40, 41 | syl2an 289 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0)
∧ ((2 · 𝑛) + 1)
= 𝑃) →
(⌊‘(𝑃 / 4)) =
if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2))) |
43 | | oveq1 5926 |
. . . . . . . . . 10
⊢ (𝑃 = ((2 · 𝑛) + 1) → (𝑃 − 1) = (((2 · 𝑛) + 1) −
1)) |
44 | 43 | eqcoms 2196 |
. . . . . . . . 9
⊢ (((2
· 𝑛) + 1) = 𝑃 → (𝑃 − 1) = (((2 · 𝑛) + 1) −
1)) |
45 | 44 | adantl 277 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0)
∧ ((2 · 𝑛) + 1)
= 𝑃) → (𝑃 − 1) = (((2 ·
𝑛) + 1) −
1)) |
46 | | 2nn0 9260 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ0 |
47 | 46 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℕ0) |
48 | | id 19 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℕ0) |
49 | 47, 48 | nn0mulcld 9301 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ (2 · 𝑛)
∈ ℕ0) |
50 | 49 | nn0cnd 9298 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (2 · 𝑛)
∈ ℂ) |
51 | | pncan1 8398 |
. . . . . . . . . 10
⊢ ((2
· 𝑛) ∈ ℂ
→ (((2 · 𝑛) +
1) − 1) = (2 · 𝑛)) |
52 | 50, 51 | syl 14 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ (((2 · 𝑛) +
1) − 1) = (2 · 𝑛)) |
53 | 52 | ad2antlr 489 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0)
∧ ((2 · 𝑛) + 1)
= 𝑃) → (((2 ·
𝑛) + 1) − 1) = (2
· 𝑛)) |
54 | 45, 53 | eqtrd 2226 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0)
∧ ((2 · 𝑛) + 1)
= 𝑃) → (𝑃 − 1) = (2 · 𝑛)) |
55 | 54 | oveq1d 5934 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0)
∧ ((2 · 𝑛) + 1)
= 𝑃) → ((𝑃 − 1) / 2) = ((2 ·
𝑛) / 2)) |
56 | | nn0cn 9253 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℂ) |
57 | | 2cnd 9057 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℂ) |
58 | | 2ap0 9077 |
. . . . . . . . 9
⊢ 2 #
0 |
59 | 58 | a1i 9 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ 2 # 0) |
60 | 56, 57, 59 | divcanap3d 8816 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ ((2 · 𝑛) / 2)
= 𝑛) |
61 | 60 | ad2antlr 489 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0)
∧ ((2 · 𝑛) + 1)
= 𝑃) → ((2 ·
𝑛) / 2) = 𝑛) |
62 | 55, 61 | eqtrd 2226 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0)
∧ ((2 · 𝑛) + 1)
= 𝑃) → ((𝑃 − 1) / 2) = 𝑛) |
63 | 37, 42, 62 | 3brtr4d 4062 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0)
∧ ((2 · 𝑛) + 1)
= 𝑃) →
(⌊‘(𝑃 / 4))
≤ ((𝑃 − 1) /
2)) |
64 | 63 | rexlimdva2 2614 |
. . 3
⊢ (𝑃 ∈ ℙ →
(∃𝑛 ∈
ℕ0 ((2 · 𝑛) + 1) = 𝑃 → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))) |
65 | 4, 64 | sylbid 150 |
. 2
⊢ (𝑃 ∈ ℙ → (¬ 2
∥ 𝑃 →
(⌊‘(𝑃 / 4))
≤ ((𝑃 − 1) /
2))) |
66 | 65 | imp 124 |
1
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) →
(⌊‘(𝑃 / 4))
≤ ((𝑃 − 1) /
2)) |