| Step | Hyp | Ref
 | Expression | 
| 1 |   | zringbas 14152 | 
. 2
⊢ ℤ =
(Base‘ℤring) | 
| 2 |   | zring1 14157 | 
. 2
⊢ 1 =
(1r‘ℤring) | 
| 3 |   | mulgrhm.1 | 
. 2
⊢  1 =
(1r‘𝑅) | 
| 4 |   | zringmulr 14155 | 
. 2
⊢  ·
= (.r‘ℤring) | 
| 5 |   | eqid 2196 | 
. 2
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 6 |   | zringring 14149 | 
. . 3
⊢
ℤring ∈ Ring | 
| 7 | 6 | a1i 9 | 
. 2
⊢ (𝑅 ∈ Ring →
ℤring ∈ Ring) | 
| 8 |   | id 19 | 
. 2
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) | 
| 9 |   | mulgghm2.f | 
. . . 4
⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) | 
| 10 |   | oveq1 5929 | 
. . . 4
⊢ (𝑛 = 1 → (𝑛 · 1 ) = (1 · 1 )) | 
| 11 |   | 1zzd 9353 | 
. . . 4
⊢ (𝑅 ∈ Ring → 1 ∈
ℤ) | 
| 12 |   | eqid 2196 | 
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 13 | 12, 3 | ringidcl 13576 | 
. . . . . 6
⊢ (𝑅 ∈ Ring → 1 ∈
(Base‘𝑅)) | 
| 14 |   | mulgghm2.m | 
. . . . . . 7
⊢  · =
(.g‘𝑅) | 
| 15 | 12, 14 | mulg1 13259 | 
. . . . . 6
⊢ ( 1 ∈
(Base‘𝑅) → (1
·
1 ) =
1
) | 
| 16 | 13, 15 | syl 14 | 
. . . . 5
⊢ (𝑅 ∈ Ring → (1 · 1 ) = 1
) | 
| 17 | 16, 13 | eqeltrd 2273 | 
. . . 4
⊢ (𝑅 ∈ Ring → (1 · 1 ) ∈
(Base‘𝑅)) | 
| 18 | 9, 10, 11, 17 | fvmptd3 5655 | 
. . 3
⊢ (𝑅 ∈ Ring → (𝐹‘1) = (1 · 1
)) | 
| 19 | 18, 16 | eqtrd 2229 | 
. 2
⊢ (𝑅 ∈ Ring → (𝐹‘1) = 1 ) | 
| 20 |   | ringgrp 13557 | 
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | 
| 21 | 20 | adantr 276 | 
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Grp) | 
| 22 |   | simprr 531 | 
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈
ℤ) | 
| 23 | 13 | adantr 276 | 
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 ∈
(Base‘𝑅)) | 
| 24 | 12, 14, 21, 22, 23 | mulgcld 13274 | 
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 1 ) ∈ (Base‘𝑅)) | 
| 25 | 12, 5, 3 | ringlidm 13579 | 
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑦 · 1 ) ∈ (Base‘𝑅)) → ( 1 (.r‘𝑅)(𝑦 · 1 )) = (𝑦 · 1 )) | 
| 26 | 24, 25 | syldan 282 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ( 1
(.r‘𝑅)(𝑦 · 1 )) = (𝑦 · 1 )) | 
| 27 | 26 | oveq2d 5938 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · ( 1
(.r‘𝑅)(𝑦 · 1 ))) = (𝑥 · (𝑦 · 1 ))) | 
| 28 |   | simpl 109 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Ring) | 
| 29 |   | simprl 529 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈
ℤ) | 
| 30 | 12, 14, 5 | mulgass2 13614 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 1 ∈
(Base‘𝑅) ∧ (𝑦 · 1 ) ∈ (Base‘𝑅))) → ((𝑥 · 1
)(.r‘𝑅)(𝑦 · 1 )) = (𝑥 · ( 1
(.r‘𝑅)(𝑦 · 1 )))) | 
| 31 | 28, 29, 23, 24, 30 | syl13anc 1251 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 1
)(.r‘𝑅)(𝑦 · 1 )) = (𝑥 · ( 1
(.r‘𝑅)(𝑦 · 1 )))) | 
| 32 | 12, 14 | mulgass 13289 | 
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈
(Base‘𝑅))) →
((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 ))) | 
| 33 | 21, 29, 22, 23, 32 | syl13anc 1251 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 ))) | 
| 34 | 27, 31, 33 | 3eqtr4rd 2240 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = ((𝑥 · 1
)(.r‘𝑅)(𝑦 · 1 ))) | 
| 35 |   | oveq1 5929 | 
. . . 4
⊢ (𝑛 = (𝑥 · 𝑦) → (𝑛 · 1 ) = ((𝑥 · 𝑦) · 1 )) | 
| 36 |   | zmulcl 9379 | 
. . . . 5
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | 
| 37 | 36 | adantl 277 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ) | 
| 38 | 12, 14, 21, 37, 23 | mulgcld 13274 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) ∈ (Base‘𝑅)) | 
| 39 | 9, 35, 37, 38 | fvmptd3 5655 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 )) | 
| 40 |   | oveq1 5929 | 
. . . . 5
⊢ (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 )) | 
| 41 | 12, 14, 21, 29, 23 | mulgcld 13274 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 1 ) ∈ (Base‘𝑅)) | 
| 42 | 9, 40, 29, 41 | fvmptd3 5655 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘𝑥) = (𝑥 · 1 )) | 
| 43 |   | oveq1 5929 | 
. . . . 5
⊢ (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 )) | 
| 44 | 9, 43, 22, 24 | fvmptd3 5655 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘𝑦) = (𝑦 · 1 )) | 
| 45 | 42, 44 | oveq12d 5940 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹‘𝑥)(.r‘𝑅)(𝐹‘𝑦)) = ((𝑥 · 1
)(.r‘𝑅)(𝑦 · 1 ))) | 
| 46 | 34, 39, 45 | 3eqtr4d 2239 | 
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥)(.r‘𝑅)(𝐹‘𝑦))) | 
| 47 | 14, 9, 12 | mulgghm2 14164 | 
. . 3
⊢ ((𝑅 ∈ Grp ∧ 1 ∈
(Base‘𝑅)) →
𝐹 ∈
(ℤring GrpHom 𝑅)) | 
| 48 | 20, 13, 47 | syl2anc 411 | 
. 2
⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring
GrpHom 𝑅)) | 
| 49 | 1, 2, 3, 4, 5, 7, 8, 19, 46, 48 | isrhm2d 13721 | 
1
⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring
RingHom 𝑅)) |