ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgrhm GIF version

Theorem mulgrhm 13924
Description: The powers of the element 1 give a ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgrhm.1 1 = (1r𝑅)
Assertion
Ref Expression
mulgrhm (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
Distinct variable groups:   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgrhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 13912 . 2 ℤ = (Base‘ℤring)
2 zring1 13917 . 2 1 = (1r‘ℤring)
3 mulgrhm.1 . 2 1 = (1r𝑅)
4 zringmulr 13915 . 2 · = (.r‘ℤring)
5 eqid 2189 . 2 (.r𝑅) = (.r𝑅)
6 zringring 13909 . . 3 ring ∈ Ring
76a1i 9 . 2 (𝑅 ∈ Ring → ℤring ∈ Ring)
8 id 19 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
9 mulgghm2.f . . . 4 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
10 oveq1 5904 . . . 4 (𝑛 = 1 → (𝑛 · 1 ) = (1 · 1 ))
11 1zzd 9311 . . . 4 (𝑅 ∈ Ring → 1 ∈ ℤ)
12 eqid 2189 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
1312, 3ringidcl 13391 . . . . . 6 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
14 mulgghm2.m . . . . . . 7 · = (.g𝑅)
1512, 14mulg1 13086 . . . . . 6 ( 1 ∈ (Base‘𝑅) → (1 · 1 ) = 1 )
1613, 15syl 14 . . . . 5 (𝑅 ∈ Ring → (1 · 1 ) = 1 )
1716, 13eqeltrd 2266 . . . 4 (𝑅 ∈ Ring → (1 · 1 ) ∈ (Base‘𝑅))
189, 10, 11, 17fvmptd3 5630 . . 3 (𝑅 ∈ Ring → (𝐹‘1) = (1 · 1 ))
1918, 16eqtrd 2222 . 2 (𝑅 ∈ Ring → (𝐹‘1) = 1 )
20 ringgrp 13372 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2120adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Grp)
22 simprr 531 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
2313adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 ∈ (Base‘𝑅))
2412, 14, 21, 22, 23mulgcld 13101 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 1 ) ∈ (Base‘𝑅))
2512, 5, 3ringlidm 13394 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑦 · 1 ) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝑦 · 1 )) = (𝑦 · 1 ))
2624, 25syldan 282 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ( 1 (.r𝑅)(𝑦 · 1 )) = (𝑦 · 1 ))
2726oveq2d 5913 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))) = (𝑥 · (𝑦 · 1 )))
28 simpl 109 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Ring)
29 simprl 529 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
3012, 14, 5mulgass2 13427 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 1 ∈ (Base‘𝑅) ∧ (𝑦 · 1 ) ∈ (Base‘𝑅))) → ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )) = (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))))
3128, 29, 23, 24, 30syl13anc 1251 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )) = (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))))
3212, 14mulgass 13116 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ (Base‘𝑅))) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 )))
3321, 29, 22, 23, 32syl13anc 1251 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 )))
3427, 31, 333eqtr4rd 2233 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
35 oveq1 5904 . . . 4 (𝑛 = (𝑥 · 𝑦) → (𝑛 · 1 ) = ((𝑥 · 𝑦) · 1 ))
36 zmulcl 9337 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
3736adantl 277 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
3812, 14, 21, 37, 23mulgcld 13101 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) ∈ (Base‘𝑅))
399, 35, 37, 38fvmptd3 5630 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 ))
40 oveq1 5904 . . . . 5 (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 ))
4112, 14, 21, 29, 23mulgcld 13101 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 1 ) ∈ (Base‘𝑅))
429, 40, 29, 41fvmptd3 5630 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹𝑥) = (𝑥 · 1 ))
43 oveq1 5904 . . . . 5 (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 ))
449, 43, 22, 24fvmptd3 5630 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹𝑦) = (𝑦 · 1 ))
4542, 44oveq12d 5915 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹𝑥)(.r𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
4634, 39, 453eqtr4d 2232 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥)(.r𝑅)(𝐹𝑦)))
4714, 9, 12mulgghm2 13923 . . 3 ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → 𝐹 ∈ (ℤring GrpHom 𝑅))
4820, 13, 47syl2anc 411 . 2 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring GrpHom 𝑅))
491, 2, 3, 4, 5, 7, 8, 19, 46, 48isrhm2d 13532 1 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  cmpt 4079  cfv 5235  (class class class)co 5897  1c1 7843   · cmul 7847  cz 9284  Basecbs 12515  .rcmulr 12593  Grpcgrp 12960  .gcmg 13076   GrpHom cghm 13196  1rcur 13330  Ringcrg 13367   RingHom crh 13517  ringczring 13906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-addf 7964  ax-mulf 7965
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-tp 3615  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-map 6677  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-7 9014  df-8 9015  df-9 9016  df-n0 9208  df-z 9285  df-dec 9416  df-uz 9560  df-fz 10041  df-fzo 10175  df-seqfrec 10479  df-cj 10886  df-struct 12517  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-iress 12523  df-plusg 12605  df-mulr 12606  df-starv 12607  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-mhm 12926  df-grp 12963  df-minusg 12964  df-mulg 13077  df-subg 13126  df-ghm 13197  df-cmn 13242  df-mgp 13292  df-ur 13331  df-ring 13369  df-cring 13370  df-rhm 13519  df-subrg 13583  df-icnfld 13882  df-zring 13907
This theorem is referenced by:  mulgrhm2  13925
  Copyright terms: Public domain W3C validator