ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgrhm GIF version

Theorem mulgrhm 14165
Description: The powers of the element 1 give a ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgrhm.1 1 = (1r𝑅)
Assertion
Ref Expression
mulgrhm (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
Distinct variable groups:   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgrhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 14152 . 2 ℤ = (Base‘ℤring)
2 zring1 14157 . 2 1 = (1r‘ℤring)
3 mulgrhm.1 . 2 1 = (1r𝑅)
4 zringmulr 14155 . 2 · = (.r‘ℤring)
5 eqid 2196 . 2 (.r𝑅) = (.r𝑅)
6 zringring 14149 . . 3 ring ∈ Ring
76a1i 9 . 2 (𝑅 ∈ Ring → ℤring ∈ Ring)
8 id 19 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
9 mulgghm2.f . . . 4 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
10 oveq1 5929 . . . 4 (𝑛 = 1 → (𝑛 · 1 ) = (1 · 1 ))
11 1zzd 9353 . . . 4 (𝑅 ∈ Ring → 1 ∈ ℤ)
12 eqid 2196 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
1312, 3ringidcl 13576 . . . . . 6 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
14 mulgghm2.m . . . . . . 7 · = (.g𝑅)
1512, 14mulg1 13259 . . . . . 6 ( 1 ∈ (Base‘𝑅) → (1 · 1 ) = 1 )
1613, 15syl 14 . . . . 5 (𝑅 ∈ Ring → (1 · 1 ) = 1 )
1716, 13eqeltrd 2273 . . . 4 (𝑅 ∈ Ring → (1 · 1 ) ∈ (Base‘𝑅))
189, 10, 11, 17fvmptd3 5655 . . 3 (𝑅 ∈ Ring → (𝐹‘1) = (1 · 1 ))
1918, 16eqtrd 2229 . 2 (𝑅 ∈ Ring → (𝐹‘1) = 1 )
20 ringgrp 13557 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2120adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Grp)
22 simprr 531 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
2313adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 ∈ (Base‘𝑅))
2412, 14, 21, 22, 23mulgcld 13274 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 1 ) ∈ (Base‘𝑅))
2512, 5, 3ringlidm 13579 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑦 · 1 ) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝑦 · 1 )) = (𝑦 · 1 ))
2624, 25syldan 282 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ( 1 (.r𝑅)(𝑦 · 1 )) = (𝑦 · 1 ))
2726oveq2d 5938 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))) = (𝑥 · (𝑦 · 1 )))
28 simpl 109 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Ring)
29 simprl 529 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
3012, 14, 5mulgass2 13614 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 1 ∈ (Base‘𝑅) ∧ (𝑦 · 1 ) ∈ (Base‘𝑅))) → ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )) = (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))))
3128, 29, 23, 24, 30syl13anc 1251 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )) = (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))))
3212, 14mulgass 13289 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ (Base‘𝑅))) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 )))
3321, 29, 22, 23, 32syl13anc 1251 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 )))
3427, 31, 333eqtr4rd 2240 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
35 oveq1 5929 . . . 4 (𝑛 = (𝑥 · 𝑦) → (𝑛 · 1 ) = ((𝑥 · 𝑦) · 1 ))
36 zmulcl 9379 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
3736adantl 277 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
3812, 14, 21, 37, 23mulgcld 13274 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) ∈ (Base‘𝑅))
399, 35, 37, 38fvmptd3 5655 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 ))
40 oveq1 5929 . . . . 5 (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 ))
4112, 14, 21, 29, 23mulgcld 13274 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 1 ) ∈ (Base‘𝑅))
429, 40, 29, 41fvmptd3 5655 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹𝑥) = (𝑥 · 1 ))
43 oveq1 5929 . . . . 5 (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 ))
449, 43, 22, 24fvmptd3 5655 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹𝑦) = (𝑦 · 1 ))
4542, 44oveq12d 5940 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹𝑥)(.r𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
4634, 39, 453eqtr4d 2239 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥)(.r𝑅)(𝐹𝑦)))
4714, 9, 12mulgghm2 14164 . . 3 ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → 𝐹 ∈ (ℤring GrpHom 𝑅))
4820, 13, 47syl2anc 411 . 2 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring GrpHom 𝑅))
491, 2, 3, 4, 5, 7, 8, 19, 46, 48isrhm2d 13721 1 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cmpt 4094  cfv 5258  (class class class)co 5922  1c1 7880   · cmul 7884  cz 9326  Basecbs 12678  .rcmulr 12756  Grpcgrp 13132  .gcmg 13249   GrpHom cghm 13370  1rcur 13515  Ringcrg 13552   RingHom crh 13706  ringczring 14146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-dec 9458  df-uz 9602  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-cj 11007  df-abs 11164  df-struct 12680  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-starv 12770  df-tset 12774  df-ple 12775  df-ds 12777  df-unif 12778  df-0g 12929  df-topgen 12931  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-grp 13135  df-minusg 13136  df-mulg 13250  df-subg 13300  df-ghm 13371  df-cmn 13416  df-mgp 13477  df-ur 13516  df-ring 13554  df-cring 13555  df-rhm 13708  df-subrg 13775  df-bl 14102  df-mopn 14103  df-fg 14105  df-metu 14106  df-cnfld 14113  df-zring 14147
This theorem is referenced by:  mulgrhm2  14166
  Copyright terms: Public domain W3C validator