Step | Hyp | Ref
| Expression |
1 | | zringbas 13912 |
. 2
⊢ ℤ =
(Base‘ℤring) |
2 | | zring1 13917 |
. 2
⊢ 1 =
(1r‘ℤring) |
3 | | mulgrhm.1 |
. 2
⊢ 1 =
(1r‘𝑅) |
4 | | zringmulr 13915 |
. 2
⊢ ·
= (.r‘ℤring) |
5 | | eqid 2189 |
. 2
⊢
(.r‘𝑅) = (.r‘𝑅) |
6 | | zringring 13909 |
. . 3
⊢
ℤring ∈ Ring |
7 | 6 | a1i 9 |
. 2
⊢ (𝑅 ∈ Ring →
ℤring ∈ Ring) |
8 | | id 19 |
. 2
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) |
9 | | mulgghm2.f |
. . . 4
⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) |
10 | | oveq1 5904 |
. . . 4
⊢ (𝑛 = 1 → (𝑛 · 1 ) = (1 · 1 )) |
11 | | 1zzd 9311 |
. . . 4
⊢ (𝑅 ∈ Ring → 1 ∈
ℤ) |
12 | | eqid 2189 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
13 | 12, 3 | ringidcl 13391 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 1 ∈
(Base‘𝑅)) |
14 | | mulgghm2.m |
. . . . . . 7
⊢ · =
(.g‘𝑅) |
15 | 12, 14 | mulg1 13086 |
. . . . . 6
⊢ ( 1 ∈
(Base‘𝑅) → (1
·
1 ) =
1
) |
16 | 13, 15 | syl 14 |
. . . . 5
⊢ (𝑅 ∈ Ring → (1 · 1 ) = 1
) |
17 | 16, 13 | eqeltrd 2266 |
. . . 4
⊢ (𝑅 ∈ Ring → (1 · 1 ) ∈
(Base‘𝑅)) |
18 | 9, 10, 11, 17 | fvmptd3 5630 |
. . 3
⊢ (𝑅 ∈ Ring → (𝐹‘1) = (1 · 1
)) |
19 | 18, 16 | eqtrd 2222 |
. 2
⊢ (𝑅 ∈ Ring → (𝐹‘1) = 1 ) |
20 | | ringgrp 13372 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
21 | 20 | adantr 276 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Grp) |
22 | | simprr 531 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈
ℤ) |
23 | 13 | adantr 276 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 ∈
(Base‘𝑅)) |
24 | 12, 14, 21, 22, 23 | mulgcld 13101 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 1 ) ∈ (Base‘𝑅)) |
25 | 12, 5, 3 | ringlidm 13394 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑦 · 1 ) ∈ (Base‘𝑅)) → ( 1 (.r‘𝑅)(𝑦 · 1 )) = (𝑦 · 1 )) |
26 | 24, 25 | syldan 282 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ( 1
(.r‘𝑅)(𝑦 · 1 )) = (𝑦 · 1 )) |
27 | 26 | oveq2d 5913 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · ( 1
(.r‘𝑅)(𝑦 · 1 ))) = (𝑥 · (𝑦 · 1 ))) |
28 | | simpl 109 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Ring) |
29 | | simprl 529 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈
ℤ) |
30 | 12, 14, 5 | mulgass2 13427 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 1 ∈
(Base‘𝑅) ∧ (𝑦 · 1 ) ∈ (Base‘𝑅))) → ((𝑥 · 1
)(.r‘𝑅)(𝑦 · 1 )) = (𝑥 · ( 1
(.r‘𝑅)(𝑦 · 1 )))) |
31 | 28, 29, 23, 24, 30 | syl13anc 1251 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 1
)(.r‘𝑅)(𝑦 · 1 )) = (𝑥 · ( 1
(.r‘𝑅)(𝑦 · 1 )))) |
32 | 12, 14 | mulgass 13116 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈
(Base‘𝑅))) →
((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 ))) |
33 | 21, 29, 22, 23, 32 | syl13anc 1251 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 ))) |
34 | 27, 31, 33 | 3eqtr4rd 2233 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = ((𝑥 · 1
)(.r‘𝑅)(𝑦 · 1 ))) |
35 | | oveq1 5904 |
. . . 4
⊢ (𝑛 = (𝑥 · 𝑦) → (𝑛 · 1 ) = ((𝑥 · 𝑦) · 1 )) |
36 | | zmulcl 9337 |
. . . . 5
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) |
37 | 36 | adantl 277 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ) |
38 | 12, 14, 21, 37, 23 | mulgcld 13101 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) ∈ (Base‘𝑅)) |
39 | 9, 35, 37, 38 | fvmptd3 5630 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 )) |
40 | | oveq1 5904 |
. . . . 5
⊢ (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 )) |
41 | 12, 14, 21, 29, 23 | mulgcld 13101 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 1 ) ∈ (Base‘𝑅)) |
42 | 9, 40, 29, 41 | fvmptd3 5630 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘𝑥) = (𝑥 · 1 )) |
43 | | oveq1 5904 |
. . . . 5
⊢ (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 )) |
44 | 9, 43, 22, 24 | fvmptd3 5630 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘𝑦) = (𝑦 · 1 )) |
45 | 42, 44 | oveq12d 5915 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹‘𝑥)(.r‘𝑅)(𝐹‘𝑦)) = ((𝑥 · 1
)(.r‘𝑅)(𝑦 · 1 ))) |
46 | 34, 39, 45 | 3eqtr4d 2232 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥)(.r‘𝑅)(𝐹‘𝑦))) |
47 | 14, 9, 12 | mulgghm2 13923 |
. . 3
⊢ ((𝑅 ∈ Grp ∧ 1 ∈
(Base‘𝑅)) →
𝐹 ∈
(ℤring GrpHom 𝑅)) |
48 | 20, 13, 47 | syl2anc 411 |
. 2
⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring
GrpHom 𝑅)) |
49 | 1, 2, 3, 4, 5, 7, 8, 19, 46, 48 | isrhm2d 13532 |
1
⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring
RingHom 𝑅)) |