ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imsub GIF version

Theorem imsub 10443
Description: Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005.)
Assertion
Ref Expression
imsub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))

Proof of Theorem imsub
StepHypRef Expression
1 negcl 7779 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 imadd 10442 . . . 4 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (ℑ‘(𝐴 + -𝐵)) = ((ℑ‘𝐴) + (ℑ‘-𝐵)))
31, 2sylan2 281 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + -𝐵)) = ((ℑ‘𝐴) + (ℑ‘-𝐵)))
4 imneg 10441 . . . . 5 (𝐵 ∈ ℂ → (ℑ‘-𝐵) = -(ℑ‘𝐵))
54adantl 272 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
65oveq2d 5706 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) + (ℑ‘-𝐵)) = ((ℑ‘𝐴) + -(ℑ‘𝐵)))
73, 6eqtrd 2127 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + -𝐵)) = ((ℑ‘𝐴) + -(ℑ‘𝐵)))
8 negsub 7827 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
98fveq2d 5344 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + -𝐵)) = (ℑ‘(𝐴𝐵)))
10 imcl 10419 . . . 4 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1110recnd 7613 . . 3 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
12 imcl 10419 . . . 4 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
1312recnd 7613 . . 3 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℂ)
14 negsub 7827 . . 3 (((ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → ((ℑ‘𝐴) + -(ℑ‘𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
1511, 13, 14syl2an 284 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) + -(ℑ‘𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
167, 9, 153eqtr3d 2135 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1296  wcel 1445  cfv 5049  (class class class)co 5690  cc 7445   + caddc 7450  cmin 7750  -cneg 7751  cim 10406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-2 8579  df-cj 10407  df-re 10408  df-im 10409
This theorem is referenced by:  imsubd  10527  imcn2  10876
  Copyright terms: Public domain W3C validator