ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imsub GIF version

Theorem imsub 10139
Description: Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005.)
Assertion
Ref Expression
imsub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))

Proof of Theorem imsub
StepHypRef Expression
1 negcl 7585 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 imadd 10138 . . . 4 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (ℑ‘(𝐴 + -𝐵)) = ((ℑ‘𝐴) + (ℑ‘-𝐵)))
31, 2sylan2 280 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + -𝐵)) = ((ℑ‘𝐴) + (ℑ‘-𝐵)))
4 imneg 10137 . . . . 5 (𝐵 ∈ ℂ → (ℑ‘-𝐵) = -(ℑ‘𝐵))
54adantl 271 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
65oveq2d 5607 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) + (ℑ‘-𝐵)) = ((ℑ‘𝐴) + -(ℑ‘𝐵)))
73, 6eqtrd 2115 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + -𝐵)) = ((ℑ‘𝐴) + -(ℑ‘𝐵)))
8 negsub 7633 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
98fveq2d 5257 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + -𝐵)) = (ℑ‘(𝐴𝐵)))
10 imcl 10115 . . . 4 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1110recnd 7419 . . 3 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
12 imcl 10115 . . . 4 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
1312recnd 7419 . . 3 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℂ)
14 negsub 7633 . . 3 (((ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → ((ℑ‘𝐴) + -(ℑ‘𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
1511, 13, 14syl2an 283 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) + -(ℑ‘𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
167, 9, 153eqtr3d 2123 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  cfv 4969  (class class class)co 5591  cc 7251   + caddc 7256  cmin 7556  -cneg 7557  cim 10102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4084  df-po 4087  df-iso 4088  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-2 8375  df-cj 10103  df-re 10104  df-im 10105
This theorem is referenced by:  imsubd  10223  imcn2  10530
  Copyright terms: Public domain W3C validator