ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexnqi GIF version

Theorem ltexnqi 7411
Description: Ordering on positive fractions in terms of existence of sum. (Contributed by Jim Kingdon, 30-Apr-2020.)
Assertion
Ref Expression
ltexnqi (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexnqi
StepHypRef Expression
1 ltrelnq 7367 . . 3 <Q ⊆ (Q × Q)
21brel 4680 . 2 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
3 ltexnqq 7410 . . 3 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
43biimpd 144 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
52, 4mpcom 36 1 (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wrex 2456   class class class wbr 4005  (class class class)co 5878  Qcnq 7282   +Q cplq 7284   <Q cltq 7287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-1o 6420  df-oadd 6424  df-omul 6425  df-er 6538  df-ec 6540  df-qs 6544  df-ni 7306  df-pli 7307  df-mi 7308  df-lti 7309  df-plpq 7346  df-mpq 7347  df-enq 7349  df-nqqs 7350  df-plqqs 7351  df-mqqs 7352  df-1nqqs 7353  df-ltnqqs 7355
This theorem is referenced by:  ltbtwnnqq  7417  prnmaddl  7492  prmuloc  7568  ltexprlemm  7602  ltexprlemloc  7609  ltexprlemru  7614  addcanprlemu  7617  prplnqu  7622  aptiprleml  7641  aptiprlemu  7642  cauappcvgprlemloc  7654  caucvgprlemloc  7677  caucvgprprlemloc  7705
  Copyright terms: Public domain W3C validator