ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexnqi GIF version

Theorem ltexnqi 7522
Description: Ordering on positive fractions in terms of existence of sum. (Contributed by Jim Kingdon, 30-Apr-2020.)
Assertion
Ref Expression
ltexnqi (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexnqi
StepHypRef Expression
1 ltrelnq 7478 . . 3 <Q ⊆ (Q × Q)
21brel 4727 . 2 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
3 ltexnqq 7521 . . 3 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
43biimpd 144 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
52, 4mpcom 36 1 (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  wrex 2485   class class class wbr 4044  (class class class)co 5944  Qcnq 7393   +Q cplq 7395   <Q cltq 7398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-ltnqqs 7466
This theorem is referenced by:  ltbtwnnqq  7528  prnmaddl  7603  prmuloc  7679  ltexprlemm  7713  ltexprlemloc  7720  ltexprlemru  7725  addcanprlemu  7728  prplnqu  7733  aptiprleml  7752  aptiprlemu  7753  cauappcvgprlemloc  7765  caucvgprlemloc  7788  caucvgprprlemloc  7816
  Copyright terms: Public domain W3C validator