| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssor | Structured version Visualization version GIF version | ||
| Description: The absolute value of a surreal is either that surreal or its negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
| Ref | Expression |
|---|---|
| abssor | ⊢ (𝐴 ∈ No → ((abss‘𝐴) = 𝐴 ∨ (abss‘𝐴) = ( -us ‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeqor 4527 | . 2 ⊢ (if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = 𝐴 ∨ if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = ( -us ‘𝐴)) | |
| 2 | abssval 28178 | . . . 4 ⊢ (𝐴 ∈ No → (abss‘𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) | |
| 3 | 2 | eqeq1d 2733 | . . 3 ⊢ (𝐴 ∈ No → ((abss‘𝐴) = 𝐴 ↔ if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = 𝐴)) |
| 4 | 2 | eqeq1d 2733 | . . 3 ⊢ (𝐴 ∈ No → ((abss‘𝐴) = ( -us ‘𝐴) ↔ if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = ( -us ‘𝐴))) |
| 5 | 3, 4 | orbi12d 918 | . 2 ⊢ (𝐴 ∈ No → (((abss‘𝐴) = 𝐴 ∨ (abss‘𝐴) = ( -us ‘𝐴)) ↔ (if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = 𝐴 ∨ if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = ( -us ‘𝐴)))) |
| 6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝐴 ∈ No → ((abss‘𝐴) = 𝐴 ∨ (abss‘𝐴) = ( -us ‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ifcif 4475 class class class wbr 5091 ‘cfv 6481 No csur 27579 ≤s csle 27684 0s c0s 27767 -us cnegs 27962 absscabss 28176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-no 27582 df-slt 27583 df-bday 27584 df-sslt 27722 df-scut 27724 df-0s 27769 df-made 27789 df-old 27790 df-left 27792 df-right 27793 df-norec 27882 df-negs 27964 df-abss 28177 |
| This theorem is referenced by: absslt 28188 |
| Copyright terms: Public domain | W3C validator |