| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssneg | Structured version Visualization version GIF version | ||
| Description: Surreal absolute value of the negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
| Ref | Expression |
|---|---|
| abssneg | ⊢ (𝐴 ∈ No → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negnegs 28006 | . . . 4 ⊢ (𝐴 ∈ No → ( -us ‘( -us ‘𝐴)) = 𝐴) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → ( -us ‘( -us ‘𝐴)) = 𝐴) |
| 3 | negscl 27998 | . . . 4 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | |
| 4 | 0sno 27790 | . . . . . . . 8 ⊢ 0s ∈ No | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ No → 0s ∈ No ) |
| 6 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ No → 𝐴 ∈ No ) | |
| 7 | 5, 6 | slenegd 28010 | . . . . . 6 ⊢ (𝐴 ∈ No → ( 0s ≤s 𝐴 ↔ ( -us ‘𝐴) ≤s ( -us ‘ 0s ))) |
| 8 | negs0s 27988 | . . . . . . 7 ⊢ ( -us ‘ 0s ) = 0s | |
| 9 | 8 | breq2i 5103 | . . . . . 6 ⊢ (( -us ‘𝐴) ≤s ( -us ‘ 0s ) ↔ ( -us ‘𝐴) ≤s 0s ) |
| 10 | 7, 9 | bitrdi 287 | . . . . 5 ⊢ (𝐴 ∈ No → ( 0s ≤s 𝐴 ↔ ( -us ‘𝐴) ≤s 0s )) |
| 11 | 10 | biimpa 476 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → ( -us ‘𝐴) ≤s 0s ) |
| 12 | abssnid 28201 | . . . 4 ⊢ ((( -us ‘𝐴) ∈ No ∧ ( -us ‘𝐴) ≤s 0s ) → (abss‘( -us ‘𝐴)) = ( -us ‘( -us ‘𝐴))) | |
| 13 | 3, 11, 12 | syl2an2r 685 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (abss‘( -us ‘𝐴)) = ( -us ‘( -us ‘𝐴))) |
| 14 | abssid 28199 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (abss‘𝐴) = 𝐴) | |
| 15 | 2, 13, 14 | 3eqtr4d 2778 | . 2 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) |
| 16 | 6, 5 | slenegd 28010 | . . . . . 6 ⊢ (𝐴 ∈ No → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us ‘𝐴))) |
| 17 | 8 | breq1i 5102 | . . . . . 6 ⊢ (( -us ‘ 0s ) ≤s ( -us ‘𝐴) ↔ 0s ≤s ( -us ‘𝐴)) |
| 18 | 16, 17 | bitrdi 287 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 ≤s 0s ↔ 0s ≤s ( -us ‘𝐴))) |
| 19 | 18 | biimpa 476 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 0s ≤s ( -us ‘𝐴)) |
| 20 | abssid 28199 | . . . 4 ⊢ ((( -us ‘𝐴) ∈ No ∧ 0s ≤s ( -us ‘𝐴)) → (abss‘( -us ‘𝐴)) = ( -us ‘𝐴)) | |
| 21 | 3, 19, 20 | syl2an2r 685 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘( -us ‘𝐴)) = ( -us ‘𝐴)) |
| 22 | abssnid 28201 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘𝐴) = ( -us ‘𝐴)) | |
| 23 | 21, 22 | eqtr4d 2771 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) |
| 24 | sletric 27723 | . . 3 ⊢ (( 0s ∈ No ∧ 𝐴 ∈ No ) → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) | |
| 25 | 4, 24 | mpan 690 | . 2 ⊢ (𝐴 ∈ No → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) |
| 26 | 15, 23, 25 | mpjaodan 960 | 1 ⊢ (𝐴 ∈ No → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 No csur 27598 ≤s csle 27703 0s c0s 27786 -us cnegs 27981 absscabss 28195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-1o 8394 df-2o 8395 df-nadd 8590 df-no 27601 df-slt 27602 df-bday 27603 df-sle 27704 df-sslt 27741 df-scut 27743 df-0s 27788 df-made 27808 df-old 27809 df-left 27811 df-right 27812 df-norec 27901 df-norec2 27912 df-adds 27923 df-negs 27983 df-abss 28196 |
| This theorem is referenced by: absslt 28207 |
| Copyright terms: Public domain | W3C validator |