MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssneg Structured version   Visualization version   GIF version

Theorem abssneg 28125
Description: Surreal absolute value of the negative. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
abssneg (𝐴 No → (abss‘( -us𝐴)) = (abss𝐴))

Proof of Theorem abssneg
StepHypRef Expression
1 negnegs 27926 . . . 4 (𝐴 No → ( -us ‘( -us𝐴)) = 𝐴)
21adantr 480 . . 3 ((𝐴 No ∧ 0s ≤s 𝐴) → ( -us ‘( -us𝐴)) = 𝐴)
3 negscl 27918 . . . 4 (𝐴 No → ( -us𝐴) ∈ No )
4 0sno 27714 . . . . . . . 8 0s No
54a1i 11 . . . . . . 7 (𝐴 No → 0s No )
6 id 22 . . . . . . 7 (𝐴 No 𝐴 No )
75, 6slenegd 27930 . . . . . 6 (𝐴 No → ( 0s ≤s 𝐴 ↔ ( -us𝐴) ≤s ( -us ‘ 0s )))
8 negs0s 27908 . . . . . . 7 ( -us ‘ 0s ) = 0s
98breq2i 5110 . . . . . 6 (( -us𝐴) ≤s ( -us ‘ 0s ) ↔ ( -us𝐴) ≤s 0s )
107, 9bitrdi 287 . . . . 5 (𝐴 No → ( 0s ≤s 𝐴 ↔ ( -us𝐴) ≤s 0s ))
1110biimpa 476 . . . 4 ((𝐴 No ∧ 0s ≤s 𝐴) → ( -us𝐴) ≤s 0s )
12 abssnid 28121 . . . 4 ((( -us𝐴) ∈ No ∧ ( -us𝐴) ≤s 0s ) → (abss‘( -us𝐴)) = ( -us ‘( -us𝐴)))
133, 11, 12syl2an2r 685 . . 3 ((𝐴 No ∧ 0s ≤s 𝐴) → (abss‘( -us𝐴)) = ( -us ‘( -us𝐴)))
14 abssid 28119 . . 3 ((𝐴 No ∧ 0s ≤s 𝐴) → (abss𝐴) = 𝐴)
152, 13, 143eqtr4d 2774 . 2 ((𝐴 No ∧ 0s ≤s 𝐴) → (abss‘( -us𝐴)) = (abss𝐴))
166, 5slenegd 27930 . . . . . 6 (𝐴 No → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us𝐴)))
178breq1i 5109 . . . . . 6 (( -us ‘ 0s ) ≤s ( -us𝐴) ↔ 0s ≤s ( -us𝐴))
1816, 17bitrdi 287 . . . . 5 (𝐴 No → (𝐴 ≤s 0s ↔ 0s ≤s ( -us𝐴)))
1918biimpa 476 . . . 4 ((𝐴 No 𝐴 ≤s 0s ) → 0s ≤s ( -us𝐴))
20 abssid 28119 . . . 4 ((( -us𝐴) ∈ No ∧ 0s ≤s ( -us𝐴)) → (abss‘( -us𝐴)) = ( -us𝐴))
213, 19, 20syl2an2r 685 . . 3 ((𝐴 No 𝐴 ≤s 0s ) → (abss‘( -us𝐴)) = ( -us𝐴))
22 abssnid 28121 . . 3 ((𝐴 No 𝐴 ≤s 0s ) → (abss𝐴) = ( -us𝐴))
2321, 22eqtr4d 2767 . 2 ((𝐴 No 𝐴 ≤s 0s ) → (abss‘( -us𝐴)) = (abss𝐴))
24 sletric 27652 . . 3 (( 0s No 𝐴 No ) → ( 0s ≤s 𝐴𝐴 ≤s 0s ))
254, 24mpan 690 . 2 (𝐴 No → ( 0s ≤s 𝐴𝐴 ≤s 0s ))
2615, 23, 25mpjaodan 960 1 (𝐴 No → (abss‘( -us𝐴)) = (abss𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499   No csur 27527   ≤s csle 27632   0s c0s 27710   -us cnegs 27901  absscabss 28115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-nadd 8607  df-no 27530  df-slt 27531  df-bday 27532  df-sle 27633  df-sslt 27669  df-scut 27671  df-0s 27712  df-made 27731  df-old 27732  df-left 27734  df-right 27735  df-norec 27821  df-norec2 27832  df-adds 27843  df-negs 27903  df-abss 28116
This theorem is referenced by:  absslt  28127
  Copyright terms: Public domain W3C validator