![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abssneg | Structured version Visualization version GIF version |
Description: Surreal absolute value of the negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
Ref | Expression |
---|---|
abssneg | ⊢ (𝐴 ∈ No → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negnegs 28094 | . . . 4 ⊢ (𝐴 ∈ No → ( -us ‘( -us ‘𝐴)) = 𝐴) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → ( -us ‘( -us ‘𝐴)) = 𝐴) |
3 | negscl 28086 | . . . 4 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | |
4 | 0sno 27889 | . . . . . . . 8 ⊢ 0s ∈ No | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ No → 0s ∈ No ) |
6 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ No → 𝐴 ∈ No ) | |
7 | 5, 6 | slenegd 28098 | . . . . . 6 ⊢ (𝐴 ∈ No → ( 0s ≤s 𝐴 ↔ ( -us ‘𝐴) ≤s ( -us ‘ 0s ))) |
8 | negs0s 28076 | . . . . . . 7 ⊢ ( -us ‘ 0s ) = 0s | |
9 | 8 | breq2i 5174 | . . . . . 6 ⊢ (( -us ‘𝐴) ≤s ( -us ‘ 0s ) ↔ ( -us ‘𝐴) ≤s 0s ) |
10 | 7, 9 | bitrdi 287 | . . . . 5 ⊢ (𝐴 ∈ No → ( 0s ≤s 𝐴 ↔ ( -us ‘𝐴) ≤s 0s )) |
11 | 10 | biimpa 476 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → ( -us ‘𝐴) ≤s 0s ) |
12 | abssnid 28285 | . . . 4 ⊢ ((( -us ‘𝐴) ∈ No ∧ ( -us ‘𝐴) ≤s 0s ) → (abss‘( -us ‘𝐴)) = ( -us ‘( -us ‘𝐴))) | |
13 | 3, 11, 12 | syl2an2r 684 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (abss‘( -us ‘𝐴)) = ( -us ‘( -us ‘𝐴))) |
14 | abssid 28283 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (abss‘𝐴) = 𝐴) | |
15 | 2, 13, 14 | 3eqtr4d 2790 | . 2 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) |
16 | 6, 5 | slenegd 28098 | . . . . . 6 ⊢ (𝐴 ∈ No → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us ‘𝐴))) |
17 | 8 | breq1i 5173 | . . . . . 6 ⊢ (( -us ‘ 0s ) ≤s ( -us ‘𝐴) ↔ 0s ≤s ( -us ‘𝐴)) |
18 | 16, 17 | bitrdi 287 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 ≤s 0s ↔ 0s ≤s ( -us ‘𝐴))) |
19 | 18 | biimpa 476 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 0s ≤s ( -us ‘𝐴)) |
20 | abssid 28283 | . . . 4 ⊢ ((( -us ‘𝐴) ∈ No ∧ 0s ≤s ( -us ‘𝐴)) → (abss‘( -us ‘𝐴)) = ( -us ‘𝐴)) | |
21 | 3, 19, 20 | syl2an2r 684 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘( -us ‘𝐴)) = ( -us ‘𝐴)) |
22 | abssnid 28285 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘𝐴) = ( -us ‘𝐴)) | |
23 | 21, 22 | eqtr4d 2783 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) |
24 | sletric 27827 | . . 3 ⊢ (( 0s ∈ No ∧ 𝐴 ∈ No ) → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) | |
25 | 4, 24 | mpan 689 | . 2 ⊢ (𝐴 ∈ No → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) |
26 | 15, 23, 25 | mpjaodan 959 | 1 ⊢ (𝐴 ∈ No → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 No csur 27702 ≤s csle 27807 0s c0s 27885 -us cnegs 28069 absscabss 28279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-nadd 8722 df-no 27705 df-slt 27706 df-bday 27707 df-sle 27808 df-sslt 27844 df-scut 27846 df-0s 27887 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec 27989 df-norec2 28000 df-adds 28011 df-negs 28071 df-abss 28280 |
This theorem is referenced by: absslt 28291 |
Copyright terms: Public domain | W3C validator |