| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssneg | Structured version Visualization version GIF version | ||
| Description: Surreal absolute value of the negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
| Ref | Expression |
|---|---|
| abssneg | ⊢ (𝐴 ∈ No → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negnegs 27981 | . . . 4 ⊢ (𝐴 ∈ No → ( -us ‘( -us ‘𝐴)) = 𝐴) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → ( -us ‘( -us ‘𝐴)) = 𝐴) |
| 3 | negscl 27973 | . . . 4 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | |
| 4 | 0sno 27765 | . . . . . . . 8 ⊢ 0s ∈ No | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ No → 0s ∈ No ) |
| 6 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ No → 𝐴 ∈ No ) | |
| 7 | 5, 6 | slenegd 27985 | . . . . . 6 ⊢ (𝐴 ∈ No → ( 0s ≤s 𝐴 ↔ ( -us ‘𝐴) ≤s ( -us ‘ 0s ))) |
| 8 | negs0s 27963 | . . . . . . 7 ⊢ ( -us ‘ 0s ) = 0s | |
| 9 | 8 | breq2i 5094 | . . . . . 6 ⊢ (( -us ‘𝐴) ≤s ( -us ‘ 0s ) ↔ ( -us ‘𝐴) ≤s 0s ) |
| 10 | 7, 9 | bitrdi 287 | . . . . 5 ⊢ (𝐴 ∈ No → ( 0s ≤s 𝐴 ↔ ( -us ‘𝐴) ≤s 0s )) |
| 11 | 10 | biimpa 476 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → ( -us ‘𝐴) ≤s 0s ) |
| 12 | abssnid 28176 | . . . 4 ⊢ ((( -us ‘𝐴) ∈ No ∧ ( -us ‘𝐴) ≤s 0s ) → (abss‘( -us ‘𝐴)) = ( -us ‘( -us ‘𝐴))) | |
| 13 | 3, 11, 12 | syl2an2r 685 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (abss‘( -us ‘𝐴)) = ( -us ‘( -us ‘𝐴))) |
| 14 | abssid 28174 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (abss‘𝐴) = 𝐴) | |
| 15 | 2, 13, 14 | 3eqtr4d 2776 | . 2 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) |
| 16 | 6, 5 | slenegd 27985 | . . . . . 6 ⊢ (𝐴 ∈ No → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us ‘𝐴))) |
| 17 | 8 | breq1i 5093 | . . . . . 6 ⊢ (( -us ‘ 0s ) ≤s ( -us ‘𝐴) ↔ 0s ≤s ( -us ‘𝐴)) |
| 18 | 16, 17 | bitrdi 287 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 ≤s 0s ↔ 0s ≤s ( -us ‘𝐴))) |
| 19 | 18 | biimpa 476 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 0s ≤s ( -us ‘𝐴)) |
| 20 | abssid 28174 | . . . 4 ⊢ ((( -us ‘𝐴) ∈ No ∧ 0s ≤s ( -us ‘𝐴)) → (abss‘( -us ‘𝐴)) = ( -us ‘𝐴)) | |
| 21 | 3, 19, 20 | syl2an2r 685 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘( -us ‘𝐴)) = ( -us ‘𝐴)) |
| 22 | abssnid 28176 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘𝐴) = ( -us ‘𝐴)) | |
| 23 | 21, 22 | eqtr4d 2769 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) |
| 24 | sletric 27698 | . . 3 ⊢ (( 0s ∈ No ∧ 𝐴 ∈ No ) → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) | |
| 25 | 4, 24 | mpan 690 | . 2 ⊢ (𝐴 ∈ No → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) |
| 26 | 15, 23, 25 | mpjaodan 960 | 1 ⊢ (𝐴 ∈ No → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 ‘cfv 6476 No csur 27573 ≤s csle 27678 0s c0s 27761 -us cnegs 27956 absscabss 28170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-1o 8380 df-2o 8381 df-nadd 8576 df-no 27576 df-slt 27577 df-bday 27578 df-sle 27679 df-sslt 27716 df-scut 27718 df-0s 27763 df-made 27783 df-old 27784 df-left 27786 df-right 27787 df-norec 27876 df-norec2 27887 df-adds 27898 df-negs 27958 df-abss 28171 |
| This theorem is referenced by: absslt 28182 |
| Copyright terms: Public domain | W3C validator |