MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssge0 Structured version   Visualization version   GIF version

Theorem abssge0 28287
Description: The absolute value of a surreal number is non-negative. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
abssge0 (𝐴 No → 0s ≤s (abss𝐴))

Proof of Theorem abssge0
StepHypRef Expression
1 id 22 . . . . 5 ( 0s ≤s 𝐴 → 0s ≤s 𝐴)
2 iftrue 4554 . . . . 5 ( 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)) = 𝐴)
31, 2breqtrrd 5194 . . . 4 ( 0s ≤s 𝐴 → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)))
43adantr 480 . . 3 (( 0s ≤s 𝐴𝐴 No ) → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)))
5 negs0s 28076 . . . . 5 ( -us ‘ 0s ) = 0s
6 0sno 27889 . . . . . . . . 9 0s No
7 sletric 27827 . . . . . . . . 9 (( 0s No 𝐴 No ) → ( 0s ≤s 𝐴𝐴 ≤s 0s ))
86, 7mpan 689 . . . . . . . 8 (𝐴 No → ( 0s ≤s 𝐴𝐴 ≤s 0s ))
98ord 863 . . . . . . 7 (𝐴 No → (¬ 0s ≤s 𝐴𝐴 ≤s 0s ))
109impcom 407 . . . . . 6 ((¬ 0s ≤s 𝐴𝐴 No ) → 𝐴 ≤s 0s )
11 simpr 484 . . . . . . 7 ((¬ 0s ≤s 𝐴𝐴 No ) → 𝐴 No )
126a1i 11 . . . . . . 7 ((¬ 0s ≤s 𝐴𝐴 No ) → 0s No )
1311, 12slenegd 28098 . . . . . 6 ((¬ 0s ≤s 𝐴𝐴 No ) → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us𝐴)))
1410, 13mpbid 232 . . . . 5 ((¬ 0s ≤s 𝐴𝐴 No ) → ( -us ‘ 0s ) ≤s ( -us𝐴))
155, 14eqbrtrrid 5202 . . . 4 ((¬ 0s ≤s 𝐴𝐴 No ) → 0s ≤s ( -us𝐴))
16 iffalse 4557 . . . . 5 (¬ 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)) = ( -us𝐴))
1716adantr 480 . . . 4 ((¬ 0s ≤s 𝐴𝐴 No ) → if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)) = ( -us𝐴))
1815, 17breqtrrd 5194 . . 3 ((¬ 0s ≤s 𝐴𝐴 No ) → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)))
194, 18pm2.61ian 811 . 2 (𝐴 No → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)))
20 abssval 28281 . 2 (𝐴 No → (abss𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)))
2119, 20breqtrrd 5194 1 (𝐴 No → 0s ≤s (abss𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  ifcif 4548   class class class wbr 5166  cfv 6573   No csur 27702   ≤s csle 27807   0s c0s 27885   -us cnegs 28069  absscabss 28279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-abss 28280
This theorem is referenced by:  remulscllem2  28451
  Copyright terms: Public domain W3C validator