| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssge0 | Structured version Visualization version GIF version | ||
| Description: The absolute value of a surreal number is non-negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
| Ref | Expression |
|---|---|
| abssge0 | ⊢ (𝐴 ∈ No → 0s ≤s (abss‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . 5 ⊢ ( 0s ≤s 𝐴 → 0s ≤s 𝐴) | |
| 2 | iftrue 4484 | . . . . 5 ⊢ ( 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = 𝐴) | |
| 3 | 1, 2 | breqtrrd 5123 | . . . 4 ⊢ ( 0s ≤s 𝐴 → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) |
| 4 | 3 | adantr 480 | . . 3 ⊢ (( 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) |
| 5 | negs0s 27955 | . . . . 5 ⊢ ( -us ‘ 0s ) = 0s | |
| 6 | 0sno 27758 | . . . . . . . . 9 ⊢ 0s ∈ No | |
| 7 | sletric 27692 | . . . . . . . . 9 ⊢ (( 0s ∈ No ∧ 𝐴 ∈ No ) → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) | |
| 8 | 6, 7 | mpan 690 | . . . . . . . 8 ⊢ (𝐴 ∈ No → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) |
| 9 | 8 | ord 864 | . . . . . . 7 ⊢ (𝐴 ∈ No → (¬ 0s ≤s 𝐴 → 𝐴 ≤s 0s )) |
| 10 | 9 | impcom 407 | . . . . . 6 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 𝐴 ≤s 0s ) |
| 11 | simpr 484 | . . . . . . 7 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 𝐴 ∈ No ) | |
| 12 | 6 | a1i 11 | . . . . . . 7 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 0s ∈ No ) |
| 13 | 11, 12 | slenegd 27977 | . . . . . 6 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us ‘𝐴))) |
| 14 | 10, 13 | mpbid 232 | . . . . 5 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → ( -us ‘ 0s ) ≤s ( -us ‘𝐴)) |
| 15 | 5, 14 | eqbrtrrid 5131 | . . . 4 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 0s ≤s ( -us ‘𝐴)) |
| 16 | iffalse 4487 | . . . . 5 ⊢ (¬ 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = ( -us ‘𝐴)) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = ( -us ‘𝐴)) |
| 18 | 15, 17 | breqtrrd 5123 | . . 3 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) |
| 19 | 4, 18 | pm2.61ian 811 | . 2 ⊢ (𝐴 ∈ No → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) |
| 20 | abssval 28164 | . 2 ⊢ (𝐴 ∈ No → (abss‘𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) | |
| 21 | 19, 20 | breqtrrd 5123 | 1 ⊢ (𝐴 ∈ No → 0s ≤s (abss‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ifcif 4478 class class class wbr 5095 ‘cfv 6486 No csur 27567 ≤s csle 27672 0s c0s 27754 -us cnegs 27948 absscabss 28162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-1o 8395 df-2o 8396 df-nadd 8591 df-no 27570 df-slt 27571 df-bday 27572 df-sle 27673 df-sslt 27710 df-scut 27712 df-0s 27756 df-made 27775 df-old 27776 df-left 27778 df-right 27779 df-norec 27868 df-norec2 27879 df-adds 27890 df-negs 27950 df-abss 28163 |
| This theorem is referenced by: remulscllem2 28388 |
| Copyright terms: Public domain | W3C validator |