MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssge0 Structured version   Visualization version   GIF version

Theorem abssge0 28199
Description: The absolute value of a surreal number is non-negative. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
abssge0 (𝐴 No → 0s ≤s (abss𝐴))

Proof of Theorem abssge0
StepHypRef Expression
1 id 22 . . . . 5 ( 0s ≤s 𝐴 → 0s ≤s 𝐴)
2 iftrue 4506 . . . . 5 ( 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)) = 𝐴)
31, 2breqtrrd 5147 . . . 4 ( 0s ≤s 𝐴 → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)))
43adantr 480 . . 3 (( 0s ≤s 𝐴𝐴 No ) → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)))
5 negs0s 27984 . . . . 5 ( -us ‘ 0s ) = 0s
6 0sno 27790 . . . . . . . . 9 0s No
7 sletric 27728 . . . . . . . . 9 (( 0s No 𝐴 No ) → ( 0s ≤s 𝐴𝐴 ≤s 0s ))
86, 7mpan 690 . . . . . . . 8 (𝐴 No → ( 0s ≤s 𝐴𝐴 ≤s 0s ))
98ord 864 . . . . . . 7 (𝐴 No → (¬ 0s ≤s 𝐴𝐴 ≤s 0s ))
109impcom 407 . . . . . 6 ((¬ 0s ≤s 𝐴𝐴 No ) → 𝐴 ≤s 0s )
11 simpr 484 . . . . . . 7 ((¬ 0s ≤s 𝐴𝐴 No ) → 𝐴 No )
126a1i 11 . . . . . . 7 ((¬ 0s ≤s 𝐴𝐴 No ) → 0s No )
1311, 12slenegd 28006 . . . . . 6 ((¬ 0s ≤s 𝐴𝐴 No ) → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us𝐴)))
1410, 13mpbid 232 . . . . 5 ((¬ 0s ≤s 𝐴𝐴 No ) → ( -us ‘ 0s ) ≤s ( -us𝐴))
155, 14eqbrtrrid 5155 . . . 4 ((¬ 0s ≤s 𝐴𝐴 No ) → 0s ≤s ( -us𝐴))
16 iffalse 4509 . . . . 5 (¬ 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)) = ( -us𝐴))
1716adantr 480 . . . 4 ((¬ 0s ≤s 𝐴𝐴 No ) → if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)) = ( -us𝐴))
1815, 17breqtrrd 5147 . . 3 ((¬ 0s ≤s 𝐴𝐴 No ) → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)))
194, 18pm2.61ian 811 . 2 (𝐴 No → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)))
20 abssval 28193 . 2 (𝐴 No → (abss𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)))
2119, 20breqtrrd 5147 1 (𝐴 No → 0s ≤s (abss𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  ifcif 4500   class class class wbr 5119  cfv 6531   No csur 27603   ≤s csle 27708   0s c0s 27786   -us cnegs 27977  absscabss 28191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-abss 28192
This theorem is referenced by:  remulscllem2  28404
  Copyright terms: Public domain W3C validator