| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssge0 | Structured version Visualization version GIF version | ||
| Description: The absolute value of a surreal number is non-negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
| Ref | Expression |
|---|---|
| abssge0 | ⊢ (𝐴 ∈ No → 0s ≤s (abss‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . 5 ⊢ ( 0s ≤s 𝐴 → 0s ≤s 𝐴) | |
| 2 | iftrue 4481 | . . . . 5 ⊢ ( 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = 𝐴) | |
| 3 | 1, 2 | breqtrrd 5119 | . . . 4 ⊢ ( 0s ≤s 𝐴 → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) |
| 4 | 3 | adantr 480 | . . 3 ⊢ (( 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) |
| 5 | negs0s 27966 | . . . . 5 ⊢ ( -us ‘ 0s ) = 0s | |
| 6 | 0sno 27768 | . . . . . . . . 9 ⊢ 0s ∈ No | |
| 7 | sletric 27701 | . . . . . . . . 9 ⊢ (( 0s ∈ No ∧ 𝐴 ∈ No ) → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) | |
| 8 | 6, 7 | mpan 690 | . . . . . . . 8 ⊢ (𝐴 ∈ No → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) |
| 9 | 8 | ord 864 | . . . . . . 7 ⊢ (𝐴 ∈ No → (¬ 0s ≤s 𝐴 → 𝐴 ≤s 0s )) |
| 10 | 9 | impcom 407 | . . . . . 6 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 𝐴 ≤s 0s ) |
| 11 | simpr 484 | . . . . . . 7 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 𝐴 ∈ No ) | |
| 12 | 6 | a1i 11 | . . . . . . 7 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 0s ∈ No ) |
| 13 | 11, 12 | slenegd 27988 | . . . . . 6 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us ‘𝐴))) |
| 14 | 10, 13 | mpbid 232 | . . . . 5 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → ( -us ‘ 0s ) ≤s ( -us ‘𝐴)) |
| 15 | 5, 14 | eqbrtrrid 5127 | . . . 4 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 0s ≤s ( -us ‘𝐴)) |
| 16 | iffalse 4484 | . . . . 5 ⊢ (¬ 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = ( -us ‘𝐴)) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = ( -us ‘𝐴)) |
| 18 | 15, 17 | breqtrrd 5119 | . . 3 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) |
| 19 | 4, 18 | pm2.61ian 811 | . 2 ⊢ (𝐴 ∈ No → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) |
| 20 | abssval 28175 | . 2 ⊢ (𝐴 ∈ No → (abss‘𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) | |
| 21 | 19, 20 | breqtrrd 5119 | 1 ⊢ (𝐴 ∈ No → 0s ≤s (abss‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ifcif 4475 class class class wbr 5091 ‘cfv 6481 No csur 27576 ≤s csle 27681 0s c0s 27764 -us cnegs 27959 absscabss 28173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27579 df-slt 27580 df-bday 27581 df-sle 27682 df-sslt 27719 df-scut 27721 df-0s 27766 df-made 27786 df-old 27787 df-left 27789 df-right 27790 df-norec 27879 df-norec2 27890 df-adds 27901 df-negs 27961 df-abss 28174 |
| This theorem is referenced by: remulscllem2 28401 |
| Copyright terms: Public domain | W3C validator |