| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssge0 | Structured version Visualization version GIF version | ||
| Description: The absolute value of a surreal number is non-negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
| Ref | Expression |
|---|---|
| abssge0 | ⊢ (𝐴 ∈ No → 0s ≤s (abss‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . 5 ⊢ ( 0s ≤s 𝐴 → 0s ≤s 𝐴) | |
| 2 | iftrue 4497 | . . . . 5 ⊢ ( 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = 𝐴) | |
| 3 | 1, 2 | breqtrrd 5138 | . . . 4 ⊢ ( 0s ≤s 𝐴 → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) |
| 4 | 3 | adantr 480 | . . 3 ⊢ (( 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) |
| 5 | negs0s 27939 | . . . . 5 ⊢ ( -us ‘ 0s ) = 0s | |
| 6 | 0sno 27745 | . . . . . . . . 9 ⊢ 0s ∈ No | |
| 7 | sletric 27683 | . . . . . . . . 9 ⊢ (( 0s ∈ No ∧ 𝐴 ∈ No ) → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) | |
| 8 | 6, 7 | mpan 690 | . . . . . . . 8 ⊢ (𝐴 ∈ No → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) |
| 9 | 8 | ord 864 | . . . . . . 7 ⊢ (𝐴 ∈ No → (¬ 0s ≤s 𝐴 → 𝐴 ≤s 0s )) |
| 10 | 9 | impcom 407 | . . . . . 6 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 𝐴 ≤s 0s ) |
| 11 | simpr 484 | . . . . . . 7 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 𝐴 ∈ No ) | |
| 12 | 6 | a1i 11 | . . . . . . 7 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 0s ∈ No ) |
| 13 | 11, 12 | slenegd 27961 | . . . . . 6 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us ‘𝐴))) |
| 14 | 10, 13 | mpbid 232 | . . . . 5 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → ( -us ‘ 0s ) ≤s ( -us ‘𝐴)) |
| 15 | 5, 14 | eqbrtrrid 5146 | . . . 4 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 0s ≤s ( -us ‘𝐴)) |
| 16 | iffalse 4500 | . . . . 5 ⊢ (¬ 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = ( -us ‘𝐴)) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = ( -us ‘𝐴)) |
| 18 | 15, 17 | breqtrrd 5138 | . . 3 ⊢ ((¬ 0s ≤s 𝐴 ∧ 𝐴 ∈ No ) → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) |
| 19 | 4, 18 | pm2.61ian 811 | . 2 ⊢ (𝐴 ∈ No → 0s ≤s if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) |
| 20 | abssval 28148 | . 2 ⊢ (𝐴 ∈ No → (abss‘𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) | |
| 21 | 19, 20 | breqtrrd 5138 | 1 ⊢ (𝐴 ∈ No → 0s ≤s (abss‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ifcif 4491 class class class wbr 5110 ‘cfv 6514 No csur 27558 ≤s csle 27663 0s c0s 27741 -us cnegs 27932 absscabss 28146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-nadd 8633 df-no 27561 df-slt 27562 df-bday 27563 df-sle 27664 df-sslt 27700 df-scut 27702 df-0s 27743 df-made 27762 df-old 27763 df-left 27765 df-right 27766 df-norec 27852 df-norec2 27863 df-adds 27874 df-negs 27934 df-abss 28147 |
| This theorem is referenced by: remulscllem2 28359 |
| Copyright terms: Public domain | W3C validator |