| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg43 | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma G of [Crawley] p. 116, third line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013.) |
| Ref | Expression |
|---|---|
| cdlemg42.l | ⊢ ≤ = (le‘𝐾) |
| cdlemg42.j | ⊢ ∨ = (join‘𝐾) |
| cdlemg42.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemg42.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemg42.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemg42.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdlemg42.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| cdlemg43 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐹‘(𝐺‘𝑃)) = (((𝐺‘𝑃) ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ (𝑅‘𝐺)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp2l 1200 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐹 ∈ 𝑇) | |
| 3 | simp31 1210 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
| 4 | simp2r 1201 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐺 ∈ 𝑇) | |
| 5 | cdlemg42.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 6 | cdlemg42.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | cdlemg42.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | cdlemg42.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 9 | 5, 6, 7, 8 | ltrnel 40118 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
| 10 | 1, 4, 3, 9 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
| 11 | cdlemg42.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 12 | cdlemg42.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 13 | 5, 11, 6, 7, 8, 12 | cdlemg42 40708 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ¬ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) |
| 14 | cdlemg42.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 15 | 5, 11, 14, 6, 7, 8, 12 | cdlemc 40176 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) ∧ ¬ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝐹‘(𝐺‘𝑃)) = (((𝐺‘𝑃) ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊)))) |
| 16 | 1, 2, 3, 10, 13, 15 | syl131anc 1385 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐹‘(𝐺‘𝑃)) = (((𝐺‘𝑃) ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊)))) |
| 17 | 5, 11, 14, 6, 7, 8, 12 | trlval2 40142 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐺) = ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊)) |
| 18 | 1, 4, 3, 17 | syl3anc 1373 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐺) = ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊)) |
| 19 | 18 | oveq2d 7365 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝐹‘𝑃) ∨ (𝑅‘𝐺)) = ((𝐹‘𝑃) ∨ ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊))) |
| 20 | 19 | oveq2d 7365 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝐺‘𝑃) ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ (𝑅‘𝐺))) = (((𝐺‘𝑃) ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊)))) |
| 21 | 16, 20 | eqtr4d 2767 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐹‘(𝐺‘𝑃)) = (((𝐺‘𝑃) ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ (𝑅‘𝐺)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 lecple 17168 joincjn 18217 meetcmee 18218 Atomscatm 39242 HLchlt 39329 LHypclh 39963 LTrncltrn 40080 trLctrl 40137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39155 df-ol 39157 df-oml 39158 df-covers 39245 df-ats 39246 df-atl 39277 df-cvlat 39301 df-hlat 39330 df-llines 39477 df-psubsp 39482 df-pmap 39483 df-padd 39775 df-lhyp 39967 df-laut 39968 df-ldil 40083 df-ltrn 40084 df-trl 40138 |
| This theorem is referenced by: cdlemg44a 40710 |
| Copyright terms: Public domain | W3C validator |