![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg6d | Structured version Visualization version GIF version |
Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg4.l | ⊢ ≤ = (le‘𝐾) |
cdlemg4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg4.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg4.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg4.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemg4.j | ⊢ ∨ = (join‘𝐾) |
cdlemg4b.v | ⊢ 𝑉 = (𝑅‘𝐺) |
Ref | Expression |
---|---|
cdlemg6d | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ ¬ 𝑟 ≤ (𝑃 ∨ (𝐺‘𝑃))) → (𝐹‘(𝐺‘𝑄)) = 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simp21 1206 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
3 | simp31 1209 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝐺 ∈ 𝑇) | |
4 | cdlemg4.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
5 | cdlemg4.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemg4.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemg4.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | cdlemg4.r | . . . . . . 7 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
9 | cdlemg4.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
10 | cdlemg4b.v | . . . . . . 7 ⊢ 𝑉 = (𝑅‘𝐺) | |
11 | 4, 5, 6, 7, 8, 9, 10 | cdlemg4b1 39468 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇) → (𝑃 ∨ 𝑉) = (𝑃 ∨ (𝐺‘𝑃))) |
12 | 1, 2, 3, 11 | syl3anc 1371 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑃 ∨ 𝑉) = (𝑃 ∨ (𝐺‘𝑃))) |
13 | 12 | breq2d 5159 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑟 ≤ (𝑃 ∨ 𝑉) ↔ 𝑟 ≤ (𝑃 ∨ (𝐺‘𝑃)))) |
14 | 13 | notbid 317 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (¬ 𝑟 ≤ (𝑃 ∨ 𝑉) ↔ ¬ 𝑟 ≤ (𝑃 ∨ (𝐺‘𝑃)))) |
15 | 14 | anbi2d 629 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑉)) ↔ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ ¬ 𝑟 ≤ (𝑃 ∨ (𝐺‘𝑃))))) |
16 | 4, 5, 6, 7, 8, 9, 10 | cdlemg6c 39479 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑉)) → (𝐹‘(𝐺‘𝑄)) = 𝑄)) |
17 | 15, 16 | sylbird 259 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ ¬ 𝑟 ≤ (𝑃 ∨ (𝐺‘𝑃))) → (𝐹‘(𝐺‘𝑄)) = 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 lecple 17200 joincjn 18260 Atomscatm 38121 HLchlt 38208 LHypclh 38843 LTrncltrn 38960 trLctrl 39017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-riotaBAD 37811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-undef 8254 df-map 8818 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-llines 38357 df-lplanes 38358 df-lvols 38359 df-lines 38360 df-psubsp 38362 df-pmap 38363 df-padd 38655 df-lhyp 38847 df-laut 38848 df-ldil 38963 df-ltrn 38964 df-trl 39018 |
This theorem is referenced by: cdlemg6e 39481 |
Copyright terms: Public domain | W3C validator |