![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg6d | Structured version Visualization version GIF version |
Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg4.l | ⊢ ≤ = (le‘𝐾) |
cdlemg4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg4.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg4.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg4.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemg4.j | ⊢ ∨ = (join‘𝐾) |
cdlemg4b.v | ⊢ 𝑉 = (𝑅‘𝐺) |
Ref | Expression |
---|---|
cdlemg6d | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ ¬ 𝑟 ≤ (𝑃 ∨ (𝐺‘𝑃))) → (𝐹‘(𝐺‘𝑄)) = 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1129 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simp21 1199 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
3 | simp31 1202 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝐺 ∈ 𝑇) | |
4 | cdlemg4.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
5 | cdlemg4.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemg4.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemg4.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | cdlemg4.r | . . . . . . 7 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
9 | cdlemg4.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
10 | cdlemg4b.v | . . . . . . 7 ⊢ 𝑉 = (𝑅‘𝐺) | |
11 | 4, 5, 6, 7, 8, 9, 10 | cdlemg4b1 37297 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇) → (𝑃 ∨ 𝑉) = (𝑃 ∨ (𝐺‘𝑃))) |
12 | 1, 2, 3, 11 | syl3anc 1364 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑃 ∨ 𝑉) = (𝑃 ∨ (𝐺‘𝑃))) |
13 | 12 | breq2d 4980 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑟 ≤ (𝑃 ∨ 𝑉) ↔ 𝑟 ≤ (𝑃 ∨ (𝐺‘𝑃)))) |
14 | 13 | notbid 319 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (¬ 𝑟 ≤ (𝑃 ∨ 𝑉) ↔ ¬ 𝑟 ≤ (𝑃 ∨ (𝐺‘𝑃)))) |
15 | 14 | anbi2d 628 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑉)) ↔ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ ¬ 𝑟 ≤ (𝑃 ∨ (𝐺‘𝑃))))) |
16 | 4, 5, 6, 7, 8, 9, 10 | cdlemg6c 37308 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑉)) → (𝐹‘(𝐺‘𝑄)) = 𝑄)) |
17 | 15, 16 | sylbird 261 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ ¬ 𝑟 ≤ (𝑃 ∨ (𝐺‘𝑃))) → (𝐹‘(𝐺‘𝑄)) = 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 class class class wbr 4968 ‘cfv 6232 (class class class)co 7023 lecple 16405 joincjn 17387 Atomscatm 35951 HLchlt 36038 LHypclh 36672 LTrncltrn 36789 trLctrl 36846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-riotaBAD 35641 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-1st 7552 df-2nd 7553 df-undef 7797 df-map 8265 df-proset 17371 df-poset 17389 df-plt 17401 df-lub 17417 df-glb 17418 df-join 17419 df-meet 17420 df-p0 17482 df-p1 17483 df-lat 17489 df-clat 17551 df-oposet 35864 df-ol 35866 df-oml 35867 df-covers 35954 df-ats 35955 df-atl 35986 df-cvlat 36010 df-hlat 36039 df-llines 36186 df-lplanes 36187 df-lvols 36188 df-lines 36189 df-psubsp 36191 df-pmap 36192 df-padd 36484 df-lhyp 36676 df-laut 36677 df-ldil 36792 df-ltrn 36793 df-trl 36847 |
This theorem is referenced by: cdlemg6e 37310 |
Copyright terms: Public domain | W3C validator |