Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulne0d | Structured version Visualization version GIF version |
Description: The product of two nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
msq0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mul0ord.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
mulne0d.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
mulne0d.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
mulne0d | ⊢ (𝜑 → (𝐴 · 𝐵) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulne0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
2 | mulne0d.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
3 | msq0d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
4 | mul0ord.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
5 | 3, 4 | mulne0bd 11507 | . 2 ⊢ (𝜑 → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ (𝐴 · 𝐵) ≠ 0)) |
6 | 1, 2, 5 | mpbi2and 712 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ≠ 0) |
Copyright terms: Public domain | W3C validator |