Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevathlem2 Structured version   Visualization version   GIF version

Theorem cevathlem2 44271
Description: Ceva's theorem second lemma. Relate (doubled) areas of triangles 𝐶𝐴𝑂 and 𝐴𝐵𝑂 with of segments 𝐵𝐷 and 𝐷𝐶. (Contributed by Saveliy Skresanov, 24-Sep-2017.)
Hypotheses
Ref Expression
cevath.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
cevath.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
cevath.b (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
cevath.c (𝜑𝑂 ∈ ℂ)
cevath.d (𝜑 → (((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0))
cevath.e (𝜑 → (((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0))
cevath.f (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0))
Assertion
Ref Expression
cevathlem2 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑂,𝑦   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem cevathlem2
StepHypRef Expression
1 cevath.sigar . . . . . . 7 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
2 cevath.b . . . . . . . . 9 (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
32simp2d 1141 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
4 cevath.a . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
54simp1d 1140 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
64simp2d 1141 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
73, 5, 63jca 1126 . . . . . . 7 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
8 cevath.c . . . . . . . 8 (𝜑𝑂 ∈ ℂ)
95, 8subcld 11262 . . . . . . . . . 10 (𝜑 → (𝐴𝑂) ∈ ℂ)
103, 8subcld 11262 . . . . . . . . . 10 (𝜑 → (𝐷𝑂) ∈ ℂ)
119, 10jca 511 . . . . . . . . 9 (𝜑 → ((𝐴𝑂) ∈ ℂ ∧ (𝐷𝑂) ∈ ℂ))
12 cevath.d . . . . . . . . . 10 (𝜑 → (((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0))
1312simp1d 1140 . . . . . . . . 9 (𝜑 → ((𝐴𝑂)𝐺(𝐷𝑂)) = 0)
141, 11, 13sigariz 44266 . . . . . . . 8 (𝜑 → ((𝐷𝑂)𝐺(𝐴𝑂)) = 0)
158, 14jca 511 . . . . . . 7 (𝜑 → (𝑂 ∈ ℂ ∧ ((𝐷𝑂)𝐺(𝐴𝑂)) = 0))
161, 7, 15sigaradd 44269 . . . . . 6 (𝜑 → (((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) = ((𝐴𝐵)𝐺(𝑂𝐵)))
171sigarperm 44263 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑂 ∈ ℂ) → ((𝐵𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐵)𝐺(𝑂𝐵)))
186, 5, 8, 17syl3anc 1369 . . . . . 6 (𝜑 → ((𝐵𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐵)𝐺(𝑂𝐵)))
1916, 18eqtr4d 2781 . . . . 5 (𝜑 → (((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) = ((𝐵𝑂)𝐺(𝐴𝑂)))
2019oveq1d 7270 . . . 4 (𝜑 → ((((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) · (𝐶𝐷)) = (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)))
215, 6subcld 11262 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ ℂ)
223, 6subcld 11262 . . . . . . 7 (𝜑 → (𝐷𝐵) ∈ ℂ)
2321, 22jca 511 . . . . . 6 (𝜑 → ((𝐴𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ))
241, 23sigarimcd 44265 . . . . 5 (𝜑 → ((𝐴𝐵)𝐺(𝐷𝐵)) ∈ ℂ)
258, 6subcld 11262 . . . . . . 7 (𝜑 → (𝑂𝐵) ∈ ℂ)
2625, 22jca 511 . . . . . 6 (𝜑 → ((𝑂𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ))
271, 26sigarimcd 44265 . . . . 5 (𝜑 → ((𝑂𝐵)𝐺(𝐷𝐵)) ∈ ℂ)
284simp3d 1142 . . . . . 6 (𝜑𝐶 ∈ ℂ)
2928, 3subcld 11262 . . . . 5 (𝜑 → (𝐶𝐷) ∈ ℂ)
3024, 27, 29subdird 11362 . . . 4 (𝜑 → ((((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) · (𝐶𝐷)) = ((((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) − (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷))))
3120, 30eqtr3d 2780 . . 3 (𝜑 → (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)) = ((((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) − (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷))))
326, 28, 53jca 1126 . . . . 5 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
33 cevath.e . . . . . . 7 (𝜑 → (((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0))
3433simp2d 1141 . . . . . 6 (𝜑 → ((𝐵𝐷)𝐺(𝐶𝐷)) = 0)
353, 34jca 511 . . . . 5 (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0))
361, 32, 35sharhght 44268 . . . 4 (𝜑 → (((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) = (((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)))
376, 28, 83jca 1126 . . . . 5 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝑂 ∈ ℂ))
381, 37, 35sharhght 44268 . . . 4 (𝜑 → (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) = (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)))
3936, 38oveq12d 7273 . . 3 (𝜑 → ((((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) − (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷))) = ((((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)) − (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷))))
405, 28subcld 11262 . . . . . . 7 (𝜑 → (𝐴𝐶) ∈ ℂ)
413, 28subcld 11262 . . . . . . 7 (𝜑 → (𝐷𝐶) ∈ ℂ)
421sigarim 44254 . . . . . . 7 (((𝐴𝐶) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ) → ((𝐴𝐶)𝐺(𝐷𝐶)) ∈ ℝ)
4340, 41, 42syl2anc 583 . . . . . 6 (𝜑 → ((𝐴𝐶)𝐺(𝐷𝐶)) ∈ ℝ)
4443recnd 10934 . . . . 5 (𝜑 → ((𝐴𝐶)𝐺(𝐷𝐶)) ∈ ℂ)
458, 28subcld 11262 . . . . . . 7 (𝜑 → (𝑂𝐶) ∈ ℂ)
4645, 41jca 511 . . . . . 6 (𝜑 → ((𝑂𝐶) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ))
471, 46sigarimcd 44265 . . . . 5 (𝜑 → ((𝑂𝐶)𝐺(𝐷𝐶)) ∈ ℂ)
486, 3subcld 11262 . . . . 5 (𝜑 → (𝐵𝐷) ∈ ℂ)
4944, 47, 48subdird 11362 . . . 4 (𝜑 → ((((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) · (𝐵𝐷)) = ((((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)) − (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷))))
503, 5, 283jca 1126 . . . . . . 7 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ))
511, 50, 15sigaradd 44269 . . . . . 6 (𝜑 → (((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) = ((𝐴𝐶)𝐺(𝑂𝐶)))
521sigarperm 44263 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑂 ∈ ℂ) → ((𝐶𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐶)𝐺(𝑂𝐶)))
5328, 5, 8, 52syl3anc 1369 . . . . . 6 (𝜑 → ((𝐶𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐶)𝐺(𝑂𝐶)))
5451, 53eqtr4d 2781 . . . . 5 (𝜑 → (((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) = ((𝐶𝑂)𝐺(𝐴𝑂)))
5554oveq1d 7270 . . . 4 (𝜑 → ((((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) · (𝐵𝐷)) = (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)))
5649, 55eqtr3d 2780 . . 3 (𝜑 → ((((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)) − (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷))) = (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)))
5731, 39, 563eqtrrd 2783 . 2 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)))
586, 8subcld 11262 . . . 4 (𝜑 → (𝐵𝑂) ∈ ℂ)
591sigarac 44255 . . . 4 (((𝐵𝑂) ∈ ℂ ∧ (𝐴𝑂) ∈ ℂ) → ((𝐵𝑂)𝐺(𝐴𝑂)) = -((𝐴𝑂)𝐺(𝐵𝑂)))
6058, 9, 59syl2anc 583 . . 3 (𝜑 → ((𝐵𝑂)𝐺(𝐴𝑂)) = -((𝐴𝑂)𝐺(𝐵𝑂)))
6160oveq1d 7270 . 2 (𝜑 → (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)) = (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)))
629, 58jca 511 . . . . 5 (𝜑 → ((𝐴𝑂) ∈ ℂ ∧ (𝐵𝑂) ∈ ℂ))
631, 62sigarimcd 44265 . . . 4 (𝜑 → ((𝐴𝑂)𝐺(𝐵𝑂)) ∈ ℂ)
64 mulneg12 11343 . . . 4 ((((𝐴𝑂)𝐺(𝐵𝑂)) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ) → (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · -(𝐶𝐷)))
6563, 29, 64syl2anc 583 . . 3 (𝜑 → (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · -(𝐶𝐷)))
6628, 3negsubdi2d 11278 . . . 4 (𝜑 → -(𝐶𝐷) = (𝐷𝐶))
6766oveq2d 7271 . . 3 (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) · -(𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
6865, 67eqtrd 2778 . 2 (𝜑 → (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
6957, 61, 683eqtrd 2782 1 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  cmpo 7257  cc 10800  cr 10801  0cc0 10802   · cmul 10807  cmin 11135  -cneg 11136  ccj 14735  cim 14737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-cj 14738  df-re 14739  df-im 14740
This theorem is referenced by:  cevath  44272
  Copyright terms: Public domain W3C validator